

# GOVERNMENT ARTS AND SCIENCE COLLEG, KOVILPATTI – 628 503.

(AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI)
DEPARTMENT OF MATHEMATICS
STUDY E - MATERIAL

CLASS : II B.SC (MATHEMATICS)

SUBJECT: CALCULUS

## MSU/2017-18 / UG-Colleges /Part-III (B.Sc. Mathematics) / Semester - I / Core-1

### **CALCULUS**

(75 Hours)

SEM: I

Unit I: Curvature, Radius of Curvature and Centre of curvature in Cartesian and polar Coordinates

Unit II Pedal Equation-Involute and evolute-Asymptotes

Unit III Singular Points(Node, cusp, conjugate points)-Tracing of curves (cartesian only)

Unit IV Double and Triple Integrals - Changing the order of integration - Jacobians and

change of variables

Unit V Beta and Gamma functions - Application of Beta and Gamma Functions in

evaluation of Double and Triple Integrals, Improper Integrals.

#### Text Book:

Narayanan S and T.K. Manickavasagam Pillai - Calculus Volume I (2004), Volume II (2004), S. Viswanathan Printer Pvt.Ltd.

#### **Books for Reference:**

- Kandasamy P and K. Thilagavathi Mathematics for B.Sc., Volume II 2004, S. Chand & Co., New Delhi.
- Apostaol T.M. Calculus, Vol. I (4<sup>th</sup> edition) John Wiley and Sons, Inc., Newyork 1991.
- Apostaol T.M. Calculus, Vol. II (2<sup>nd</sup> edition) John Wiley and Sons, Inc., New York 1969)
- Stewart, J Single Variable Calculus (4<sup>th</sup> edition) Brooks / Cole, Cengage Learning 2010.

# Calculus Curvature Radius of turvature and center of Curvature in Cartesian and Polar co-ordinates. Pedel equation - Involute and evolute -Singular points (Node, Cusp, Conjugate Points)-Tracing of curves (Cartesian only) Double and Trible Integrals changing the order of Integration -Jacobians and change of variables. Beta and Gamma functions - Applications of Beta and Gramma fors t in evaluation of Double and Trible

Unit - I

Unit - I

Asymptotes.

Unit - II

Unit - iv

Unit - I

Integrals, Improper Integrals.

Text Book: Narayanan . S & T. K. Marickavasagan Pillai - Calculus Volume I & II Pedel equation - Involute and evalute -Singular points (Nide , Cusp , Conjugate Points) -Tracing of worse (Contesion only) Double and Trible Integrals branging the order of Integration -Jacobians and change of variables. 丁-光心 Bota and Gramma functions - Applications of Beta and Gramma from t in evaluation of Double and Trible Integral , Infrager Integral.

Calculy Unit - I Curvature: Consider a curve given by the equation y=f(x). Suppose the curve has a definite targent at each point. Let A be a foxed point on the curve and P be an arbitrary point on the curve . Let S denoted the orderigth AP. Let  $\phi$  be the angle made by the tangent with the x - axix. Then do is called the curvature of the curve P. Thus the curvature & the rate of turning of the targent with respect to the arclength It's above lating this above egn with Scanned with CamScanner

Definition The reciprocal of the convature of a curve at any point is called the nadius of curvature at that point and it is denoted by P. first point on the worse and P to an arbitrary point on the cure let 8 herotest Formula for Radius of Conventure.  $(1 + \tan^2 \phi)^{3/2}$ a called the card de so de the conve to star ii) app a  $\left[\frac{1+\left(\frac{dy}{dx}\right)^{2}}{2}\right]^{3/2}$  and the  $\frac{d^{2}y}{dx^{2}}$  and  $\frac{d^{2}y}{dx^{2}}$  and  $\frac{d^{2}y}{dx^{2}}$  and  $\frac{d^{2}y}{dx^{2}}$ the arcleyth Problem - 1 What & the radius of curvature of the curve x + y = 2 at the point (1,1) Soln: Egn Gn aver xx+y2 = 2 Differentiating the above eqn with

neglet to 
$$x$$
 we get

A  $x^3$  (+A $y^3$   $\frac{dy}{dx} = 0$ 

$$\Rightarrow Ay^3 \frac{dy}{dx} = -Ax^3$$

$$\Rightarrow \frac{dy}{dx} = \frac{-X^3}{Ay^3}$$

$$\Rightarrow \frac{dy}{dx} = \frac{-x^3}{y^3}$$
Again differentiating with respect to  $x$ ,

we get
$$\frac{d^2y}{dx^2} = \frac{y^3(3x^2) + x^3(3y^2) \frac{dy}{dx}}{y^4}$$

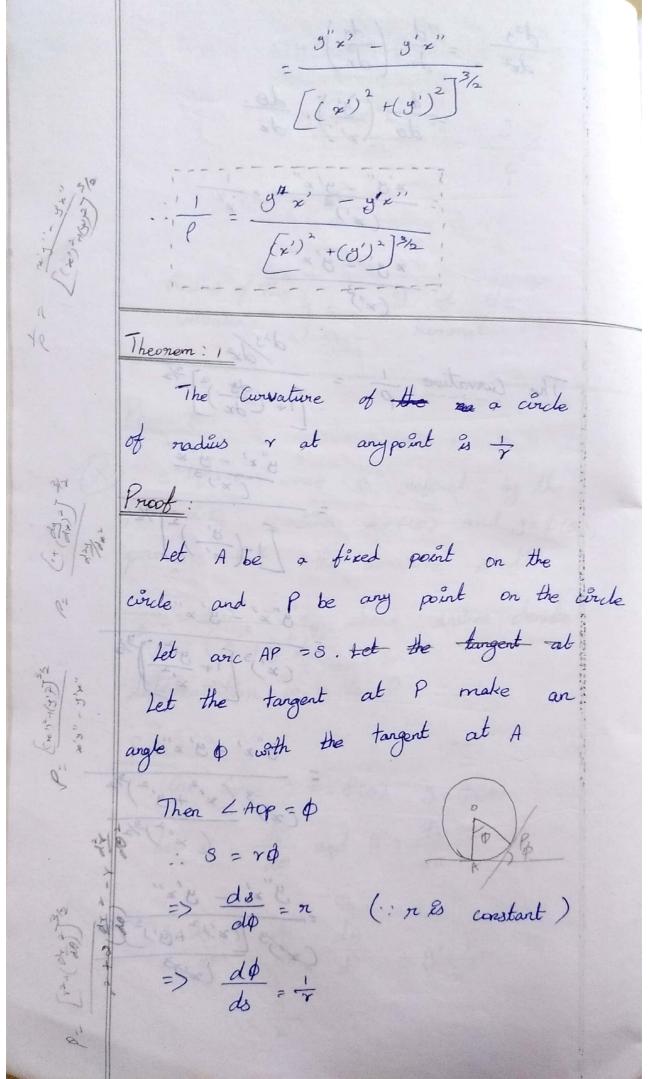
$$\frac{d^2y}{dx^2} = \frac{3(x^3) \frac{dy}{dx} - 3x^2y}{y^4}$$
At the point  $(1, 1)$ 

$$\frac{dy}{dx} = -1$$

$$\frac{d^2y}{dx^2} = \frac{3(-1)^2 - 1}{y^4} = \frac{3(-2)^2 - 6}{y^4}$$

The nadius of Constance  $\frac{d}{dx}$  $[1+(-1)^2]^{3/2}$  $(8)^{\frac{1}{2}}$  =  $\frac{2\sqrt{2}}{3}$  =  $\frac{1}{3}$ · PP = -5 Show that the nadius of Covature at any point of the caterary y=c cosh= equal to the Length of the portion of the normal intercepted between the curve and the axix of x: 3- Soln: (1- (1-)) & E=6 On come : y= c cash = dy = 0. sinh = 1 = Sinh ×

NOW [1+(dy) ] = [1+ simphe ] 6.6 (3 dea) = [cos = h = ] /a = cos3h x consider  $\frac{d^2y}{dz^2} = \cosh \frac{z}{c} \cdot \frac{1}{c} \cdot \sinh z = \cosh z$   $= \frac{1}{c} \cosh \frac{z}{c}$   $\cosh \frac{z}{c} \cdot \cosh z = 1 + 5 \cos^2 hz$ The Radius of the Curvature  $P = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{3/2}}{\frac{d^2y}{dx^2}} = \frac{\cos^8 h^{2}}{\frac{1}{6} \cosh^{2} c}$ shoot and at some and a second a = c. cos 2 h =  $= \frac{c^2 \cdot \cos^2 h}{c}$ On: Come: 2= f(0) 3= \$(0) let is the plant of the At the point (x,8)


Length of the normal = 9 [1+( fx)] 1/2

= y (cos2h = )2 = y cosh = = g (c cas h = ) = 9-9 32 Radius of the } = length of the normal Mbm-3 The a curve is defined by the parametric equation x = f(0) and  $g = \phi(0)$ , prove that the wwatere is 4 P = x'y" - y'x" where dashes denote

(x' + g') = nespect to

differentiation w. n. to 0. Soln: Gin Cove : x = f(0)  $g = \phi(0)$ Let  $x' = \frac{dx}{d\theta}$  and  $y' = \frac{dy}{d\theta}$ Now, do = do do = y'-= 3

| $\frac{d^2g}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right)$                       |
|---------------------------------------------------------------------------------------|
| de (3'). de.                                                                          |
| $=\frac{\varkappa'g''-g'\varkappa''}{(\varkappa')^2}=\frac{1}{\hat{\varkappa}'}$      |
| $=\frac{\varkappa'g''-g'\varkappa''}{(\varkappa')^3}$                                 |
| $d^2y$ $dz^2$                                                                         |
| The Convature $\frac{1}{y} = \frac{1}{y^2 + y^2}$ $\frac{y^2 y^2 - y^2 y^2}{(x^2)^3}$ |
|                                                                                       |
| atter x' g' x' y' g' be any point on the sale                                         |
| $\frac{1}{(x')^3} \int_{1+\frac{y^2}{x'^2}} \int_{2}^{3/2}$                           |
| the desired att ty"z' + 9' x"dens                                                     |
| $(x')^{\frac{3}{2}} \frac{(x'^2 + y'^2)^{\frac{3}{2}}}{(x'^2)^{\frac{3}{2}}}$         |
| 4"_1 " " "                                                                            |
| $\frac{1}{(x^2)^2+6y^2}$                                                              |
| Scanned with CamScanner                                                               |



.. The Convature of a circle of radius 刀品十. For a circle of radius &, the nadius of Curvature at any point is equal to n. P.T the radius of Correcture est any point of the cycloid x = a (0+sino) & g = a (1-080) is 40 cos 6/2 Soln: ((880+1)6) \$ \$ On auxe:  $\chi = a \left(0 + \sin \theta\right)$   $\chi = a \left(1 - \cos \theta\right)$  $z' = \frac{dz}{d\theta} = a(1 + \cos\theta)$  $y' = \frac{ds}{d\theta} = a(+\sin\theta) = +a\sin\theta$  $\chi'' = \frac{d^2z}{d\theta^2} = -a\sin\theta$  $g'' = \frac{d^2g}{dg^2} = a \cos \theta$ 

radius of Corrature  $Q = \frac{(x^2 + y^2)^{-2}}{x'y'' - x''y'}$  $= \frac{\left(a^{2} \left(1 + \cos \theta\right)^{2} + a^{2} \sin^{2} \theta\right)^{3/2}}{a^{2} \left(1 + \cos \theta\right) \cos \theta + a^{2} \sin^{2} \theta}$  $= \frac{\left(a^{2}\left(1+2\cos\theta+\cos^{2}\theta\right)^{2}+a^{2}\sin^{2}\theta\right)^{2}}{a^{2}\cos\theta+a^{2}\cos^{2}\theta+a^{2}\sin^{2}\theta}$  $(a^2(1+a\cos 0)+a^2)^{3/2}$  $a^2 \cos\theta + a^2$  $= \frac{\sqrt{a^2 (a + 2\cos 0)}}{a^2 (1 + \cos 0)}$ = d [2(1+coso)]3/2 92 (1+ coso)  $(920 - a \left[2 \left(2\cos^2\theta_2\right)\right]^{\frac{3}{2}}$   $2\cos^2\theta_2$ a [4 cos 0/2] 3/2 Ballet = (3m2 200520/28) a [ ( as 0/2 ) 2 ] 3/2 200520/ a (8 cos8 8/2)

= 4005% = p = 4a cos % Phm-5 Find P at any point 't' of the cove & = a (cost + tsint) and Solon:

Solon:

Gen Cover :- $x = \alpha (\cos t + t \sin t)$   $\frac{du}{dt} = at \cos t$   $\frac{dy}{dt} = at \sin t$ y = a(sint - tost) multiple de at cos st 8 = a (sint -tcost) dr = a[-sint + toost + sint]  $\frac{dx}{dt} = at cast$  $\frac{ds}{dt} = \alpha \left[ \cos t - t \left( -\sin t \right) - \cos t \right]$ ds = at sint season do de de de = ptoint x toost Sint sew + James dy = tant

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

$$= \frac{d}{dx} \left(\frac{tant}{dx}\right)$$

$$= \frac{d}{dx} \left(\frac{tant}{dx}\right)$$

$$= \frac{d}{dx} \left(\frac{tant}{dx}\right)$$

$$= \frac{1}{at \cos t}$$

$$= \frac{1}{at \cos^{2}t}$$

(cost) (cost) x at cast - cost x at cosst of some of p = at a not so : p = at Problem - 6 Find the nadius of curvature at the point o on the curve x=alogseco and y=a (tano-o) Soln: On Curve; x = a log occ 0 J= a (tan 0-0) Differentiating w.r. to o, we get x' = a - 1 seco tano = atano  $g' = a(8e^{2}\theta + 1) = a tan^{2}\theta$ x" be a secret at was guitarable C Radius of Convature P = (x' + y') 3/2 ( 2'9"- 30E" (学)-200 一二十一年 (学)-200 二年

(dtanto + dtanto) (alone) (adtanose20) - (ataño) (asea) [atan 0 (1+tan 20)] 1/2 202 tan2 0 sec 0 - 02 tan2 06ec 0 [a2 tan20. sec20]3/2 ar tan esco o³ tan³o sec³o P= a tono seco! Polm - 7 P.T the nadius of Convature of the Catenary uniform strength y=alogses (2) & a see a de de content no His C Gin Curve y=alog sec (x) Differentiating wir to x, we get dy = 4 - secta secta : tan( = ) . (1) dis = tan( /a)  $\frac{d^2b}{dx^2} = \sec^2(\frac{x}{a}) \cdot \frac{1}{a} = \frac{1}{a} \sec^2(\frac{x}{a})$ 

Radius of Cornalus  $P = \left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}$ #6 (x-06) 048 + [(3) x-dx2 (38 [1+ tan2(7/a)]3/2 ( 1 ) ( 4-12) DAC + 1 1 - 1/a SEC2 1/a  $sec^{2}(z_{a})^{3/2}$ (=) a p = a sec (\*/a) Pom - 8

Find P for the curve  $4ay^2 = (2a - x)^3$ at (a, 0/2). Differtiating w. or to x we got 8 a g dy = 3 (2a-x) (-1)  $\frac{dy}{dx} = \frac{-3(2a-x)^2}{8a} = \frac{3}{8a} = \frac{2}{3}$ (ds) (20 - a)2 (20 - a)2 (20 - a)2 (20 - a)2 8 30 = -3 xx = -3

$$\frac{d^{3}y}{dz^{2}} = -g_{0}y\left(6(ga-x)(-1)\right) + g(ga-x)^{2} + g_{0}x + g_{0}$$

$$= \frac{8a}{3} \left( \frac{5}{4} \right)^{\frac{3}{2}}$$

$$= \frac{8a}{3} \left( \frac{5}{4} \right)^{\frac{3}{2}}$$

$$= \frac{135a}{3h}$$

$$= \frac{135a}{3h}$$

$$= \frac{135a}{3h}$$

$$= \frac{1}{3} \left( \frac{5}{4} \right)^{\frac{3}{2}}$$

$$= \frac{1}{3} \left( \frac$$

(dy) (4.14)= 2x/2 + 2x/2 = = x4 Radius of Curvature  $P = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{1/2}}{d^2y}$  $1 = (1 + (-1)^2)^{\frac{3}{2}}$ Deferentiating the next to x, we go  $0 = \frac{(2)^{3/2}}{4} = \frac{(8)^{1/2}}{4}$ 4 = 5 4 = 5 5 5 5

Solution of the point (-2,0) 
$$\rho = ?$$

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solution on a the point (-2,0)  $\rho = ?$ 

Solutio

Soln:

Go Curve: 
$$xy = 30$$

Differentiating with nespect to  $x$ . we get

$$\frac{dy}{dx} + y(i) = 0$$

$$\frac{dy}{dx} = \frac{-y}{x}$$

$$\frac{dy}{dx} = \frac{-y}{x}$$

$$\frac{dy}{dx} = \frac{-x}{x} + y(i)$$

$$\frac{dy}{dx} = \frac{-x}{x} + y(i)$$

$$\frac{dy}{dx} = \frac{-x}{x} + y(i)$$
Realiss of Curvature  $P = \frac{-x}{x} + \frac{x}{x} + \frac{-x}{x} + \frac{-x}{x} + \frac{-x}{x} + \frac{-x}{x} + \frac{-x}{x} + \frac{-x}$ 

$$y^{3} = a^{3} \quad \text{at the paut } (a, a), \quad P?$$
Sob:

Go Cove:  $xy^{3} = a^{3}$ 

Differentiating with  $z = a\omega$  get,

$$x(3y^{3} \frac{dy}{dx}) + y^{3}(i) = 0$$

$$\frac{dy}{dx} = \frac{-y^{3}}{3x}y^{2}$$

$$\frac{dy}{dx} = \frac{-y}{3x}$$

$$\frac{dy}{dx} = \frac{x+3y}{9x^{2}}$$

$$\frac{dy}{dx} = \frac{x+3y}{9a^{2}}$$

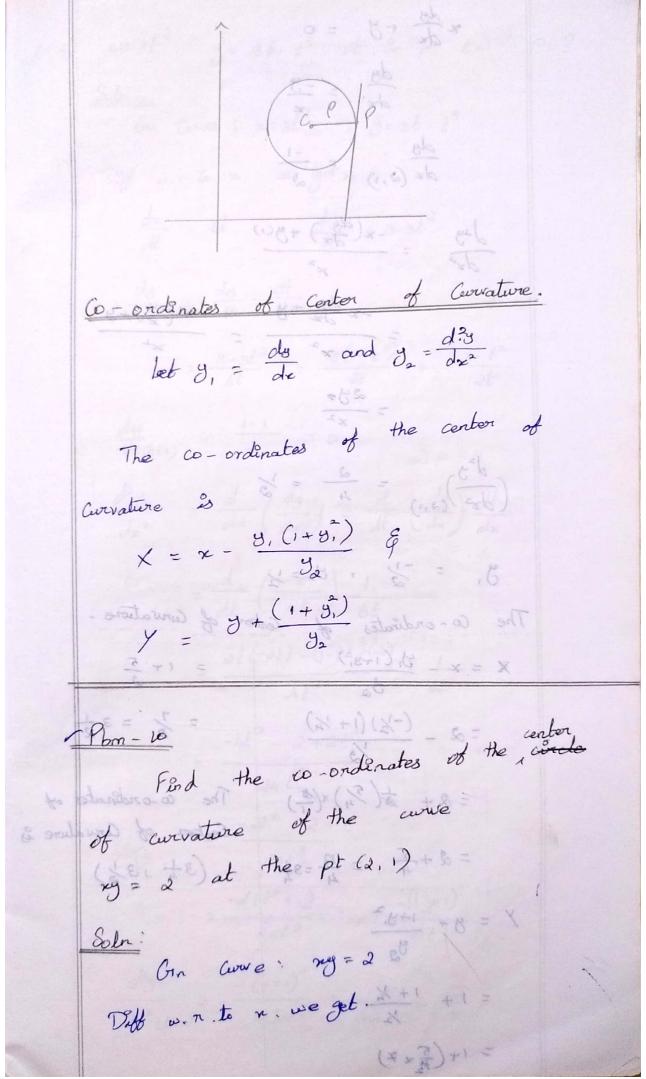
$$\frac{dy}{dx} = \frac{1}{7a}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{1}{7a}$$

$$\frac{(\omega)^{3/2}}{2^{3/2}} = \frac{9a}{4}$$

$$\frac{(\omega)^{3/2}}{2^{3/2}} = \frac{9a}{4}$$

$$P = \frac{(\omega)^{3/2}}{12} = \frac{a}{4}$$


$$P = \frac{(\omega)^{3/2}}{12} = \frac{a}$$

- x3 (3 y 3 dy) + y'3 (5 x 3) dog = - ( x 3) 2 13 [x 3 y 3 - x 3 y 3 dy dx] 13 (23 cos 26) (23 sin 0) - (23 cos 26) (23 sin 26) (23 sin 26) (23 cos 26)  $=\frac{\sqrt{3} \int_{0.5}^{1/3} \frac{\sin \theta}{\cos^2 \theta}}{\cos^2 \theta} + \frac{1}{4} \frac{1}{4} \frac{\cos \theta}{\sin^4 \theta} \frac{\cos \theta}{\cos \theta}$   $=\frac{\sqrt{3} \int_{0.5}^{1/3} \frac{\sin \theta}{\cos \theta}}{\cos^2 \theta} + \frac{1}{4} \frac{\cos \theta}{\sin^4 \theta} \frac{\cos \theta}{\cos \theta}$  $\frac{1}{3} \left[ \frac{\sin \theta}{\cos^2 \theta} + \frac{1}{\sin \theta} \right]$   $= \frac{2}{3} + \frac{1}{3} \cos^2 \theta$  $\frac{a}{3} \left[ \frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta + \sin\theta} \right]$ to the coston p such that co holdes doment del'3 x scos 20 sino alla bro and to retain 3 a cost p sing of Radius of Curvalure

(do ) = [1+ (do )]

ADU Ja 2  $= \frac{\left(1 + \tan^2 \theta\right)^{3/2}}{3a \cos^4 \theta \sin \theta}$ 

= \[ 1 + \frac{\sin20}{\cos^20} \] 30 \cos^40 \sin0  $= \frac{\int \cos^2\theta + \sin^2\theta}{\cos^2\theta}$ = 2005 TO Sin D P = 30 coso sind Centrals and Circle of Counture Deffinition Consider a point Pon any gn curve. Draw the normal to the curve at P. let c be the point on the normal to the come at p such that cp=P and ales on the side towards which the curve is concave. The C & called center of Convature the conve at p. The concle with center and radius P is called the circle of curvature.



Scanned with CamScanner

$$\frac{dy}{dx} + y = 0$$

$$\frac{dy}{dx} = \frac{-3}{x}$$

$$\frac{dy}{dx} = \frac{-1}{x^2}$$

$$\frac{dy}{dx} = \frac{-x(\frac{dy}{dx}) + y(0)}{x^2}$$

$$\frac{-x(\frac{dy}{dx}) + y}{x^2} = \frac{-x(\frac{y}{y}) + y}{x^2}$$

$$\frac{-x(\frac{dy}{dx}) + y}{x^2} = \frac{-x(\frac{dy}{dx}) + y}{x^2}$$

$$\frac{-x(\frac{dy}{dx}) + y(0)}{x^2} = \frac{-x(\frac{dy}{dx}) + y}{x^2}$$

$$\frac{-x(\frac{dy}{dx}) + y(0)}{x^2} = \frac{-x(\frac{dy}{dx}) + y(0)}{x^2}$$

$$\frac{-x(\frac{dy}{dx}) + y(0)}{x^2} = \frac{x(\frac{dy}{dx}) + y(0)}{x^2}$$

$$\frac{-x(\frac{dy}{dx}) + y(0)}{x^2} =$$

Solve:

Gen conve ; 
$$z = 3t^2$$
,  $y = 3t - t^3$ 

Diff with  $x$ , we get;

$$\frac{dx}{dt} = 6t$$

$$\frac{dy}{dt} = 3 - 3t^2$$

$$\frac{dy}{dt} = \frac{3 - 3t^2}{6t} = \frac{3(-t^2)}{6t} = \frac{1 - t^2}{2t}$$

$$\frac{dy}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx}\right) = \frac{d}{dt} \left(\frac{dy}{dx}\right) \frac{dt}{dx}$$

$$= \frac{d}{dt} \left(\frac{1 - t^2}{2t}\right) \frac{1}{6t}$$

$$= \frac{d}{dt} \left(\frac{1 - t^2}{2t}\right) \frac{1}{6t}$$

$$= \frac{d}{dt} \left(\frac{1 - t^2}{2t}\right) \frac{1}{6t}$$

$$= \frac{-4t^2 - 2t + 2t^2}{2t^2}$$

$$= \frac{-4t^2 - 2t}{2t^2}$$

| P 20 | Radius of Curvature 73/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Radius of Curvature [1+ (dy dx)2)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | 3-30=0 deg/dress= x ; sum) m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | (1+0)3/2 see .x 2 n see 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | $\frac{36 \times 1}{600} = 1 \times -6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | :: P = -6 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | the do the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3 6) | $x = a (cost + snt)$ $y = a (cost - sint)$ at the point $\rho = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.   | Point P = ? 38 = 38 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | Soln: Gen (wwe. $x = a (cest + Sint)$ $y = a (cest - sint)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | y = a (cost - sint)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | Deft w. n to x we get,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | x' = a(-sint + cost) = a(cost - sint)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | $y' = a \left(-\sin t - \cos t\right) = -a \left(\cos t + \sin t\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | z'' = a(-s, nt - cost) = -a(cost + s, nt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | $g'' = -a \left(-sint + cost\right) = -a \left(cost - sint\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Radius of Convature + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Radius of Convature + $(3)^2$ $P = \frac{\left[ (x')^2 + (8')^2 \right]^2}{x'y'' - y'x''}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | $\frac{\left[a^2(\cos t - \sin t)^2 + a^2(\cos t + \sin t)^2\right]^{3/2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | $-a^{2} (\cos t - \sin t)^{2} - a^{2} (\cos t + \sin t)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 17 = 2 = (1+1) - (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) = (1+1) |
|      | dr'den) 12(1) 12 = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

a [cos2t + sin2t - acost sint + cos2t + sin2t + acost sint] -a2 [(ant -sint)2 + (ast +sint)2] 030 (1+1)3/2 -at sint-2003/sint + ust + cost + sint + f  $a(x)^{3/2} = a(x)^{3/2}$ -4 costsint -4 costsint= a sold = a  $P = \frac{-a}{\sqrt{a}} \quad \text{sint cost} \quad \text{Ans} \quad \frac{-a}{\sqrt{a}} \quad \text{ont} \quad$ S. T  $g^2 = \frac{a^2(a-x)}{x}$  at the point (a,0)Diff win to y . we get -28 =x (2°C=1) - 2°(2-x)  $\alpha y = x \left[ \alpha^2 \left( -\frac{dx}{dy} \right) \right] - \alpha^2 (\alpha - x) \frac{dx}{dy}$  $ax^2y = -a^3 \frac{dx}{dy}$ 

| $\frac{dx}{dy} = \frac{-dx^2y}{a^3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{dz}{dz} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\frac{dz}{dy(a_{10})} = 0$ $\frac{d^{2}y}{dy^{2}} = \frac{-2}{a^{3}} \left[ x^{2}(i) + y \partial x \frac{dz}{dy} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $= \frac{-2}{a^3} \left[ x^2 + 2xy \frac{dx}{dy} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{d^2x}{dy^2} = \frac{-\lambda}{a^3} \left[ a^2 + \lambda(a)(b) o \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| And the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -4 as to sind $(x_0)$ $\frac{4}{8}$ $\frac{2}{8}$ $\frac{4}{8}$ $\frac{2}{8}$ $$ |
| - A cost sint as a sint as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Radius of Curvature 3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Radius of Curvature $P = \frac{\left[1 + \left(\frac{dx}{dy}\right)^2\right]^{3/2}}{d^2y^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $=\frac{[1+0]^{3/2}}{-3/a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $=\frac{-\alpha}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [P = = = 1 /2   sw . to at n. w the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3/8) x3+y3+2x-hy+3x =0 at the point origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8-9. Soln: 186 x x x x x x x x x x x x x x x x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Soln: 50 Gin Curve: x3+y3+ 2x2 - 4y+3x =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Det vo. n. to x. ve get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Scanned with CamScanner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

$$3x^{2} + 3y^{2} \frac{dy}{dx} + 4x - h \frac{dy}{dx} + 3 = 0$$

$$3y^{2} \frac{dy}{dx} - h \frac{dy}{dx} = -3x^{2} - 4x - 3$$

$$\frac{dy}{dx} = \frac{-3x^{2} - 4x - 3}{3y^{2} - h}$$

$$\frac{dy}{dx} = \frac{-3x^{2} - 4x - 3}{3y^{2} - h}$$

$$\frac{dy}{dx} = \frac{3}{4}$$

S. T in the parabola 
$$g^2 = hax at$$

the paint  $t$ ,  $e^2 = 3a (1+6)^{3/2}$ 
 $x = 3a + 3ata$ ,  $y = -2at^3$ 

Solv.

W. K. T the parametric egn of the parabola  $x = at^2$ ,  $y = aat$ 
 $\frac{dy}{dt} = aat$   $\frac{dy}{dt} = 3a$ 
 $\frac{dy}{dt} = \frac{dy}{dt} \cdot \frac{dt}{dt} = 2a \frac{1}{aat} = \frac{1}{t}$ 

And  $\frac{dy}{dt} = \frac{1}{t^2} \cdot \frac{1}{aat} = \frac{1}{t}$ 
 $\frac{dy}{dt} = \frac{1}{t^2} \cdot \frac{1}{aat} = \frac{1}{t}$ 
 $\frac{dy}{dt} = \frac{1}{t^2} \cdot \frac{1}{t^2} \cdot \frac{1}{t^2} \cdot \frac{1}{t^2} = \frac{1}{t^2} \cdot \frac{1}{t^2} \cdot \frac{1}{t^2} \cdot \frac{1}{t^2} = \frac{1}{t^2} \cdot \frac{1}{t^2} \cdot$ 

$$= -\frac{(t^2 + t)^{3/2}}{(t^2)^{3/2}} \quad \text{sats}$$

$$= -\frac{(t^2 + t)^{3/2}}{t^2} \quad \text{sats}$$

$$= -\frac{(t^$$

1 Pom - 12 (4 5) -S.T for a curve x 2/3 + y 2/9 = 2/3 x = a cos3t + 3a cost sin at Y = a sin3t + a a sint coset Saln: W.K. T the parametric agn of the corne 22/3 + 42/3 + 2/3 is  $x = a \cos^3 t$  ,  $y = a \sin^3 t$  $\frac{dx}{dt} = a 3\cos^2t (-sint) = -3a sint \cos^2t$ dy

dt = a 35 in 2 cost = 3 a 59 n 2 t cost  $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{3a \sin^2 t \cos t}{-3a \sin^2 t \cos t}$  $= \frac{-sint}{cost} = -tant$  $\frac{d^2y}{dx^2} = -2 \frac{d}{dt} \left( \frac{dy}{dx} \right) \left( \frac{dt}{dx} \right)$  $= \frac{d}{dt} \left(-tant\right) \frac{1}{-3a \ sint \cos^2 t}$ = -sect -3a sint cost = cosat (1+ = 1) too - too -3a sint cost

The Co-ordinates of Center of Curvature  $X = x - \frac{8}{9}, (1+8,2)$  $= a\cos^3t + \frac{\tan^2t}{3a\sin^2t\cos^3t}$ = a cos3t + tant sect x 3 a sintas 32 = a cos3t + tant 1 x 3 a sint cosit = a cos3t + 3 a sint cosat tant = a cos3t + 3 asint cost sint × = a cos3t + 3 a sinat cost  $y = y + \frac{(1+8,3)}{32}$ = asin3t + (1+tant) = asin3t + sec2t x 3a cos4t sint = asin3t + 10 x 3 asint cos42 y = asin3t + sasint cas2t

Phm-18

S. T in the a panabola

$$R + R_3 = R_0$$

Soln:

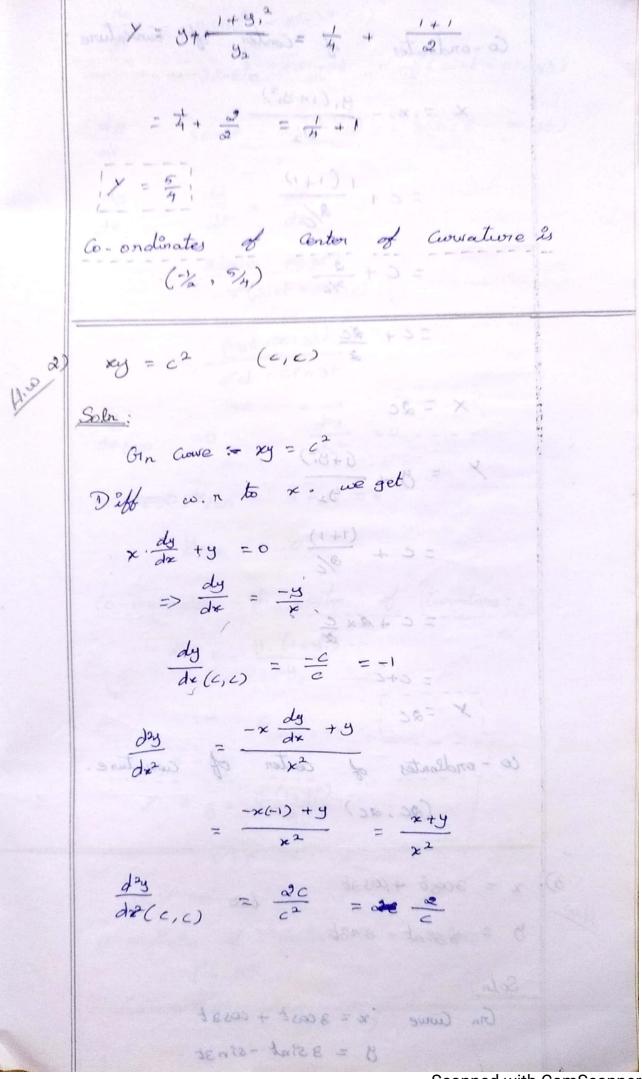
Gen (unve:

 $Se + R_3 = R_0$ 
 $Se + R_3 = R_0$ 

Pbm - 14 S.T the egr of the while of curvature at the origin of the parabola g=mx+xe2 B x2+y2 = (1+m2) a (y-mx) Soln: On auve: J= mx + (22) + x = ) Diff w. n. to x we get  $\frac{dy}{dx} = m + \frac{2x}{a}$  $\left(\frac{dy}{dz}\right)_{(0,0)} = m$ dry = 2 0 x ( + 1) + 6' =  $\left(\frac{d^2y}{dr^2}\right)_{0,0} = \frac{2}{a}$  $X = x - \frac{9(1+y_1^2)}{y_1}$ (e+x) = 0 - m (1+m²) + + + (++x/a = + x) 1x = -am (1+m2) y = 8 + (1+4,2)  $=0+\frac{1+m^2}{2a}=\frac{a}{2}(1+m^2)$ 1 y = 2/2 (1+m2) (8+08=48

$$P = \frac{\left[1 + \frac{dy}{dx}\right]^{\frac{3}{2}}}{d^{2}y^{2}}$$

$$= \frac{\left[1 + m^{2}\right]^{\frac{3}{2}}}{\frac{3}{4}}$$
The eqn of and of constant 2s
$$(x - x)^{2} + (y - y)^{2} = P^{2}$$


$$(x + \frac{am(1 + m^{2})}{2})^{\frac{3}{4}}(y + \frac{a(1 + m^{2})^{\frac{3}{2}}}{2})^{2}$$

$$= \frac{a^{2}(1 + m^{2})^{\frac{3}{2}}}{\frac{4}{4}} + \frac{a(x)\left(\frac{am(1 + m^{2})^{\frac{3}{2}}}{2}\right)^{2} + \frac{a^{2}(1 + m^{2})^{2}}{2}$$

$$= \frac{a^{2}(1 + m^{2})^{\frac{3}{2}}}{\frac{4}{4}} + \frac{a^{2}(1 + m^{2})^{\frac{3}{2}}}{\frac{4}{4}} + \frac{a^{2}(1 + m^{2})^{\frac{3}{2}}}{\frac{4}{4}}$$

$$= \frac{a^{2}(1 + m^{2})^{\frac{3}{2}}}{\frac{4}{4}} + \frac{a^{2}(1$$

|      | $x^2+y^2 = (1+m^2)a(y-mx)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.00 | 6 - onderates of Center of wowature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9    | y=x2 (1/2, 1/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | Soln Grave: y=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | Diff w. n to x, we get,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = (  | $\frac{dy}{dx} = 2x$ $\frac{dy}{dx} = 2(\frac{1}{2}) = (-\infty + 1) \cos x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| -    | -m+d290 + 20 2 ( (m+1)ma) (x) & + (m+1) + m = + 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | d29 = 2 (6m+1) a) (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| -20  | Co-ordinates of Center of Convature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | X = x - 0, (1+9,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | $= \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{2}{2} + \frac{2}{2} = $ |
|      | ( 2 2 1 ) 0 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (com | -B =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | 1 x = = 1<br>1 (t = m = e) (em + 1) = eu = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



Co-ordinates of center of Convature;  $x = x - \frac{y,(1+y,^2)}{y_2}$ = c + 1 (1+1) = C + 2/2 (AP 15) = C + AC 2 (3,4)  $\overline{x} = 2c$ y = 8 + (0+82) = 84 = 2000 no = c + (1+1) 0= 6+ m/ x = C + A x C co-ordinates of center of curvature. (2c,2c) ++ (1-)x+ x = 30st + 00s3t y = 369nt - 8nstSoln: Gin Curve x = 3 cost + cosst y = 3 Sint - singt

$$\frac{dc}{dt} = -3sint - sinst(3)$$

$$= -3sint - 3sinst = -3(sint + sinst)$$

$$\frac{dy}{dt} = 3cast - cosst(3) = 3(cost - cosst)$$

$$\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$$

$$= \frac{3(cost - cosst)}{-3(sint + sinst)}$$

$$= -\frac{(cost - cosst)}{-3(sint + sinst)}$$

$$= -\frac{(cost - cosst)}{-3(sint + sinst)}$$

$$= \frac{dy}{dx + cosst} = 0$$

$$co-condinates + 2 - center = 4 - constance:
$$x = x - y, (1 + yi)$$

$$y = y + y, (1 + yi)$$

$$y = 0$$

$$(x - x)$$

$$y = 0$$

$$(x - x)$$

$$(x - x)$$

$$y = 0$$

$$(x - x)$$

$$(x - x$$$$

Radius of Coverature when the cover gn in the polar co-ordinates  $\rho = \frac{\left(r^2 + \left(\frac{dr}{d\theta}\right)^2\right)^{3/2}}{r^2 + 2r\left(\frac{dr}{d\theta}\right)^2 - r\frac{d^2r}{d\theta^2}}$ Phon - 15

Find the nadius of curvature of the cardiod  $v = a(1 - \cos \theta)$ Soln

Gin (enve:  $v = a(1 - \cos \theta)$   $\frac{dv}{d\theta} = a(t \sin \theta) = a\sin \theta$ Pam -15  $\frac{d^2r}{d\theta^2} = a \cos \theta$  0 = 0.45 $\left[r^{2} + \left(\frac{dr}{d\theta}\right)^{2}\right]^{\frac{3}{2}} = \left[a^{2}(1-\cos\theta)^{2} + a^{2}\sin^{2}\theta\right]^{\frac{3}{2}}$ = [a2(1+0000 - 20000) +a251120]2 = \a^2[1-20000 +0900 + cesto] } = [a2 ( 0-2000)] 1 = 03[2(1-0050)] 3/2 2800 25, po 2 30 = 03/2 (28in 201) ]3

$$= a^{3} \left( 2 \sin^{9} 3 \right)^{2}^{3}$$

$$= 8a^{3} \sin^{3} 34$$

$$= a^{2} \left( 1 - (6 \cos 9)^{2} + a d \sin^{2} 9 - a^{2} 6 - c \cos \theta \cos \theta \cos \theta \right)$$

$$= a^{2} \left( 1 + c \cos^{2} \theta - a \cos \theta \right) + a a^{2} \sin^{2} \theta - a^{2} \left( c \cos \theta - c \cos^{2} \theta \right)$$

$$= a^{2} \left[ 1 + c \cos^{2} \theta + a \cos \theta + b \sin^{2} \theta + \sin^{2} \theta - c \cos \theta + c \cos^{2} \theta \right]$$

$$= a^{2} \left( 3 - 3 \cos \theta \right)$$

$$= 3a^{2} \left( 1 - \cos \theta \right)$$

$$= 3a^{2} \left( 1 - \cos \theta \right)$$

$$= 3a^{2} \left( 1 - \cos \theta \right)$$

$$= a^{2} \left( 1 - \cos \theta \right)$$

$$= a^{2} \left( 1 - \cos \theta \right)^{2}$$

$$= \frac{a^{2} a \cos^{2} \theta}{a \cos^{2} \theta}$$

$$= \frac{a^{2} a \cos^{2} \theta}{a \cos^{2} \theta}{a \cos^{2} \theta}$$

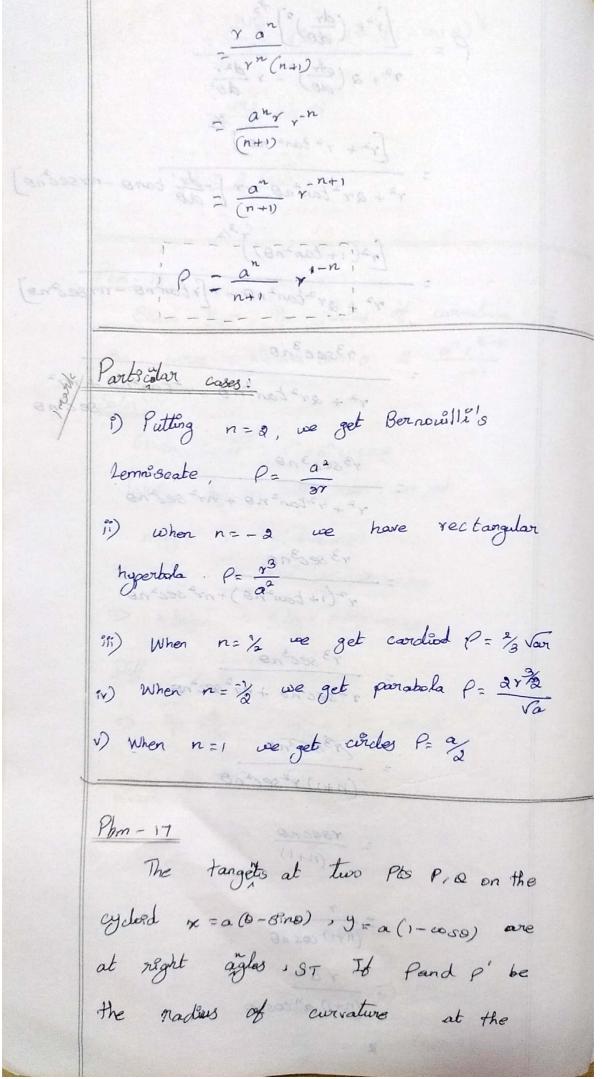
$$= \frac{a^{2} a \cos^{2} \theta}{a$$

|  | 205 va , sa (1-1000)3                                                                   |         |
|--|-----------------------------------------------------------------------------------------|---------|
|  | 26 66                                                                                   |         |
|  | P = 3 (aar)                                                                             |         |
|  | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                 |         |
|  | Pbm - 16                                                                                |         |
|  | Show that the radius of curvature                                                       | of      |
|  | the curve $y^n = a^n \cos n\theta$ & $\frac{a^n y^n - n}{n+1}$                          |         |
|  | 2021 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                |         |
|  | Given Cove: r= ancosno                                                                  |         |
|  | Taking log on both sides, we get.                                                       |         |
|  | nlogr = log(acosno)                                                                     |         |
|  | => n logr = loga + logn costo                                                           |         |
|  | => nlogr = nloga + log cosno                                                            |         |
|  | Diff w. n to o, we get                                                                  |         |
|  | => m dr = 1 (n(-simono))                                                                |         |
|  | $\Rightarrow \frac{n}{r} \frac{dr}{d\theta} = \frac{-n  s^2 n n \theta}{\cos n \theta}$ |         |
|  | $\frac{dr}{d\theta} = \frac{-r \sin \theta}{\cos n\theta}$                              |         |
|  | => dr = - 1 kan no                                                                      |         |
|  | der = to (itan no) = rsectato                                                           |         |
|  | do -dr tanno -rusecho                                                                   |         |
|  | Scanned with Car                                                                        | nScanna |

$$P = \frac{\left[r^{2} + \left(\frac{dr}{d\theta}\right)^{2}\right]^{3}}{r^{2} + 8\left(\frac{dr}{d\theta}\right)^{2} - r\frac{dr}{d\theta}}$$

$$= \frac{\left[r^{2} + r^{2} \tan^{2} n\theta\right]^{3}}{r^{2} + 3r^{2} \tan^{2} n\theta} - rr\left[-\frac{dr}{d\theta} \tan \theta - nrsee^{2}n\theta\right]$$

$$= \frac{\left[r^{2}\left(1 + \tan^{2}n\theta\right)\right]^{3/2}}{r^{2} + 3r^{2} \tan^{2}n\theta} - rr\left[r\tan^{2}n\theta - nrsee^{2}n\theta\right]$$


$$= \frac{r^{3}sec^{3}n\theta}{r^{2} + 3r^{2} \tan^{2}n\theta} - rr\left[r\tan^{2}n\theta + nr^{2}sec^{2}n\theta\right]$$

$$= \frac{r^{3}sec^{3}n\theta}{r^{2} + r^{2} \tan^{2}n\theta} + rr^{2}sec^{2}n\theta$$

$$= \frac{r^{3}sec^{3}n\theta}{r^{2} sec^{2}n\theta} + rr^{2}sec^{2}n\theta$$

$$= \frac{r^{3}sec^{3}n\theta}{r^{2} sec^{2}n\theta} + rr^{2}sec^{2}n\theta$$

$$= \frac{r^{3}sec^{3}n\theta}{(n+1)r^{2} sec^{2}n\theta}$$



Points 
$$\rho^2 + {\rho'}^2 = 16a^{\alpha}$$

Sola

Ga Curve  $\chi = a(\theta - \sin \theta)$ 
 $\int_{\pi} a(1 - \cos \theta)$ 

At the ptp, O, be the slope of the targent & cot  $(\frac{\Theta_1}{2})$ At the pt Q, Q be the slope of the tangent is cost  $(\frac{\theta_2}{a})$ Since the tangents at Pand are perpendicular, we have  $cot(\frac{\theta_1}{2})$  for  $t(\frac{\theta_2}{2}) = -1$ =)  $\frac{1}{\tan(\Theta_1)} \frac{1}{\tan(\Theta_2)}$  $\Rightarrow$   $tan(\frac{\theta_1}{2})$   $tan(\frac{\theta_2}{2}) = 1$ => Sn (0/2) Sin (02/2) =-1

cos (0/2) cos (0/2) =-1 => sin(0) sin (0) + cos (%) (cos (62) = 0  $= > \cos \left(\frac{\theta_1 + \omega_2}{2}\right) = 0$ (0, NO2) = TH => 0,002 = 11  $\theta_2 = \pi - \Theta_1$  (Taking  $\theta_2 > \theta_1$ )

Radius of Generature at P. O. is  $\rho = \frac{\left[1 + \cos t + 9_5\right]^{3/2}}{1}$ (-1/a) cosec 4(8) = [cosed 9/2] 3/2

- La costa 0/2 -Ha cased by cosec 4 ey = -Ha = -Hasin(a/s) Radius of aurature at Q. D. Es P = -Hasin 02/2 = - Ha sid 1/2 - 0/2) ens s= - 4 a cos s/2 P2 + P' = 16 a2 sin 2(0) + 16 a2 cos (0) = 1602 = 6a ces 8 ces 28 + 6 asing & (-sings) P2+P'=16a2 8" = 100 (2500 cos 9)+ 120 singe (-1ing)

8bm-18 Slove that P= 30 890 . 25° n 90 p320 1, 25° n 20 p320 1, 25° n 20° n 20 An Cowe: 1 = 30 cos 0 - a cos 30 8 = 3a sin 0 - a sin 30 26 = 30 coso - a (4 coso - 3 coso) = 3a coso - 4a cos30 + 3a coso 2 6a coso - 4a cos 30 9 = 308in0 - a (sin 0 - 48in30) = 30,58 no - 305 no +405 no y = 405:30 n' = -60 8900 +120 cos20 800 (19)2 = 60 Sino (2008 D -1) 1 + 9 200 20 -1 = 60 .60 Sin & cos 20 x" = 60 cos 8 cos 20 + 6 asino. 2 (-sindo) = 60 0050 cos 20 - 12 osino sinao 3' = 1208n 20 coso 8" = 120 (2500 cos 0)+ 120 sine (-sine)

= 24a5in 8 cos 20 - 12a 51030  $\left[ (x')^{2} + (y')^{2} \right]^{3/2} = \left[ 36a^{2} \sin^{2} \theta \cos^{2} \alpha \theta + 144 \alpha^{2} \right]^{3/2}$   $= \left[ 36a^{2} \sin^{2} \theta \cos^{2} \alpha \theta + 144 \alpha^{2} \right]^{3/2}$   $= \left[ 36a^{2} \sin^{2} \theta \cos^{2} \alpha \theta + 144 \alpha^{2} \right]^{3/2}$ = \[ \frac{36 a^2 8 n^2 \theta \left( \cos^2 2\theta + 4 \sin^2 \theta \cos^2 \theta \right) \]^{3/2} [36 a2 sin 20[( .cos20 - sin 0) + 4 stra coso] 2 October [State - Sim ] October State = 36 a25in20 (cest 0 + asn20 cest + 5n40) = [36a + sin 28 (cos 20 + sin 0)] 3/2 = 6 a smo (cos = + sin = ) = (60 sins)3 (8012 00) x'g"-y'x" = 60 sino cosão [d + asino cosão -89 ms = 12 asin30] - 100 sino 2000 [60 coso 0500 west. 800 08 = 12 a sino sin 20] 519 do = 2519800050

= 60 sin 8 cos 20 . 120 sin 8 [2 cost 0 - sin 0] 12a simpo esso. Ba coso [cos20 - Asingo] = 72 a sin o [cos 20 (2 cos 0 - sin 0) coso (cos 20 - 4 sin 0) = 12 a sin 0 /2 case cos 20 - sin to cos ao cos do cos 20 4 sinto costo T = 72 a2 sin20 [cos 200520 - sin200520 +4 Sin Base Sin Base Sin Base ) = 722 sin20 [cos20 - Cos20 - 8in20] + sin2 20] [(8+ 8+ 8 200 8 4 8 4 8 4 8)] = 136 a28 4 8 48)] = Taa sin 2 [cos 20 + sin 20] = 782 sin20  $P = \frac{(6a \sin \theta)^3}{72a^2 \sin^2 \theta}$ - 32 2 3 3 2 16 a3 sin 30 Ta a2 sings Tacher = 30 sino

Unst- 5 Pedal equation: Let 0 be a Origin con sole let Ple any point on the wive. Let p be the length of the perpendicular from 0 to the tangent at P. OT IN CHAVE THE Then = = + + ( to)2 The equation of a cover is terms of p and r is called pedel equation of the curve (or) surply P-r equation. Remark: 1. If  $v = \frac{1}{u}$ , then  $\frac{dv}{d\theta} = \frac{-1}{u^2} \frac{du}{d\theta}$ 1 at (1-cess)4 .. The P-r equation becomes Maray-17-0 4(8200-17-0

$$\frac{1}{p^{2}} = p^{2} + \mu^{2} + u^{4} \left(\frac{1}{u^{2}} \frac{du}{d\theta}\right)^{2}$$

$$\Rightarrow \frac{1}{p^{2}} = u^{2} + u^{4} \left(\frac{1}{u^{2}} \left(\frac{du}{d\theta}\right)^{2}\right)$$

$$\Rightarrow \frac{1}{p^{2}} = u^{2} + u^{4} \left(\frac{1}{u^{2}} \left(\frac{du}{d\theta}\right)^{2}\right)$$

$$\Rightarrow \frac{1}{p^{2}} = u^{2} + u^{4} \left(\frac{du}{d\theta}\right)^{2}$$

$$\Rightarrow \frac{1}{p^{2}} = u^{2} + u^{4} \left(\frac{du}{d\theta}\right)^$$

$$\frac{1}{p^{2}} = \frac{1}{1} + \frac{1}{1} \alpha^{2} \sin^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \sin^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} (1 + \cos^{2}\theta - 2\cos^{2}\theta) + \frac{1}{4} \sin^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{4} \cos^{2}\theta$$

$$\frac{1}{p^{2}} = \frac{1}{2} \cos^{2}\theta - 2\cos^{2}\theta + \frac{1}{4} \cos^{2}\theta + \frac{1}{$$

Pom - 2 Form the polar equ of the Saln: Polar and the parabola is  $\frac{\partial \alpha}{r} = 1 - \cos \theta$  $\frac{1}{y} = \frac{1 - \cos \omega}{2\alpha} \qquad ->0$ Diff w. n to 0, we get  $\frac{-1}{r^2} \frac{dr}{d\theta} = \frac{1}{2a} \sin \theta$  $\frac{dr}{d\theta} = \frac{-r^2 \sin \theta}{2a}$ The p-r equation of the curve is  $\frac{1}{b^2} = \frac{1}{y^2} + \frac{1}{y^2} \left(\frac{dr}{d\theta}\right)^2$  $= \frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left( \frac{-r^2 \sin \theta}{a^2} \right)^2$ => = = + + ( rtsin20)  $= \frac{1}{b^2} = \frac{1}{12} + \frac{\sin^2 \theta}{4a^2}$ 

$$= \frac{1}{p^2} = \frac{(1-\cos\theta)^2}{ha^2} + \frac{\sin^2\theta}{ha^2} \left[ \frac{1}{1} \frac{1}{90} \right]$$

$$\Rightarrow \frac{1}{p^2} = \frac{(1-\cos\theta)^2}{ha^2} + \sin^2\theta$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{ha^2} \left[ \frac{1}{1} + \cos^2\theta - 2\cos\theta + \sin^2\theta \right]$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{ha^2} \left[ 2 - \cos\theta \right]$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{ha^2} \left[ 2 - \cos\theta \right]$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{a^2} \left[ \frac{3e}{2} \right] \left[ \frac{1}{1} \frac{1}{90} \right]$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{a^2}$$

$$\Rightarrow \frac{1}{p^$$

Diff at to B, weight,

$$\frac{dy}{d\theta} = \frac{1}{sinmo} \cdot (asmb) \cdot h$$
 $\frac{dy}{d\theta} = cont mb$ 

The P-v equation of the wine 2

 $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left(\frac{dr}{d\theta}\right)^2$ 
 $\Rightarrow \frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left(\frac{r^2 c d^2 mb}{r^2}\right)$ 
 $\Rightarrow \frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left(\frac{r^2 c d^2 mb}{r^2}\right)$ 
 $\Rightarrow \frac{1}{p^2} = \frac{1+a d^2 mb}{r^2}$ 
 $\Rightarrow \frac{1}{p^2} = \frac{asc^2 mb}{r^2}$ 

Phon-h

Find the per equation of the conve 
$$n = \frac{9}{3}(1-as0)$$

Shi.

Gen conve:  $r = \frac{a}{3}(1-as0)$ 

The per equ of the conve, be

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4}(\frac{a^2}{a0})^2$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4}(\frac{a^2}{a0})^2 + a^2sn^20$$

$$\Rightarrow \frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4}(\frac{a^2}{a^2}sn^20) + a^2sn^20$$

$$\Rightarrow \frac{1}{r^4} = \frac{1}{r^4}(\frac{a^2}{a^2}sn^20) + a^2sn^20$$

$$\Rightarrow \frac{1}{r^4} = \frac{1}{r^4}(\frac{a^2}{a^2}sn^20) + a^2sn^20$$

| To 1                                                                              |
|-----------------------------------------------------------------------------------|
| $a^2 + a^2 \cos^2 \theta + a \sin^2 \theta - a a^2 \cos \theta$                   |
| 484                                                                               |
|                                                                                   |
| = 202-8020000                                                                     |
| 474                                                                               |
|                                                                                   |
| da2 (1-coso)                                                                      |
| $=\frac{2a^2(1-\cos 0)}{4r^4}$ $2a \cdot a(1-\cos 0)$                             |
|                                                                                   |
| = 20. 2(1-1050)                                                                   |
| (200-1) 28h : swall dans of (1-coso)                                              |
|                                                                                   |
| = to sar = at now the                                                             |
| 284 13                                                                            |
| anse = mo                                                                         |
| $\Rightarrow \frac{1}{62} = \frac{a}{13}$                                         |
| $\Rightarrow \frac{1}{p^2} = \frac{a}{p^3}$ The per equ of the correction         |
|                                                                                   |
| $\Rightarrow p^2 = \frac{r^3}{a^{(1)}} + \frac{1}{r^2} = \frac{1}{r^2}$           |
| 1 62 - 3                                                                          |
| $\Rightarrow  ap^2 = r^3 $                                                        |
|                                                                                   |
| Front the p-r egn of ellipse                                                      |
| tend the p-r egn of ellipse                                                       |
| $\frac{\chi^2}{a^2} \rightarrow \frac{y^2}{b^2} = 1 \left( (0200 - 0.50) \right)$ |
| 92 P ((850) - (3 1/2) H                                                           |
| Soln:                                                                             |
| Gn above: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$                                 |
| $a^2 + b^2 = 1$                                                                   |
| W. K. T                                                                           |
|                                                                                   |
| The Parametric egn of the ellipse                                                 |
| & $x = a\cos\theta$ , $\beta = basin \theta$                                      |
| $\&  \mathbf{x} = a\cos\theta + \delta$                                           |
|                                                                                   |

and the equation of the tangent at the point (a case, b sine) is  $\frac{x}{a}\cos\theta + \frac{y}{b}\sin\theta = 1$ => bxcoso + ay sino = ab The Length of the tangent p from oragin es  $b = \frac{ab}{\int b^2 \cos^2 \theta + a^2 \sin^2 \theta} = \frac{a^2 + by + a^2 + by + a^2 + a^2$  $p^2 = \frac{(ab)^2}{(\sqrt{b^2 ab^2 b + a^2 s^2 n^2 o})^2}$  $b^{2} = \frac{a^{2}b^{2}}{b^{2}\cos^{2}\theta + a^{2}\delta^{2}b^{2}\theta}$  $\frac{1}{p^2} = \frac{a^2 s^2 n^2 o + b^2 \cos^2 o}{a^2 b^2}$ Also W.K.T the mutual notation between the cartesian co-ordenates and polar co-ordinates as x2= x2+y2 12 = a2 cos20 + b259020 => x2 = a2 (1-5020) + 62 (1-6520)  $= a^2 - a^2 \sin^2 \theta + b^2 - b^2 \cos^2 \theta$ 

| 1   | 200520)                                                                                                                |
|-----|------------------------------------------------------------------------------------------------------------------------|
|     | $= y^2 = a^2 + b^2 - (a^2 \sin^2\theta + b^2 \cos^2\theta)$                                                            |
|     | 2 2 2 2 5: by (D)                                                                                                      |
|     | $\Rightarrow r^2 = a^2 + b^2 - \frac{a^2b^2}{p^2} \left[ :bs(0) \right]$                                               |
|     | $= \frac{a^2b^2}{b^2} = \frac{-a^2b^2}{b^2}$                                                                           |
|     |                                                                                                                        |
|     | $\Rightarrow a^{2} + b^{2} - \gamma^{2} = \frac{a^{2} b^{2}}{b^{2}}$                                                   |
|     | mant of the part of the street                                                                                         |
|     | $= \frac{a^2 + b^2 - x^2}{a^2 b^2} = \frac{1}{b^2}$                                                                    |
|     | do do                                                                                                                  |
|     | $\Rightarrow \frac{a^2 + b^2}{a^2 b^2} + \frac{b^2}{a^2 b^2} - \frac{r^2}{a^2 b^2} \Rightarrow \frac{1}{b^2}$          |
|     | $a^2b^2$ $a^2b^2$ $a^2b^2$                                                                                             |
|     | $\Rightarrow \frac{1}{b^2} + \frac{1}{a^2} = \frac{\gamma^2}{a^2b^2} = \frac{1}{b^2}$                                  |
|     | $=$ $\frac{1}{b^2}$ $\frac{1}{b^2}$ $\frac{1}{b^2}$                                                                    |
|     |                                                                                                                        |
|     |                                                                                                                        |
|     | Pom - 6 Severator accord                                                                                               |
|     | Pom - 6 850850+ 088050                                                                                                 |
|     | Phom - 6  Find the $p-r$ egn of the conce  conic $l = 1 + e \cos \theta$                                               |
| (A) | Find the $P-Y$ eqn of the conce conic $\frac{1}{y} = 1 + e\cos\theta$                                                  |
| (A) | Find the P-r equ of the conce conic $\frac{1}{7} = 1 + e\cos\theta$                                                    |
|     | Find the P-r equ of the conce conic $\frac{1}{7} = 1 + e\cos\theta$                                                    |
|     | Phon - 6  Find the $P-Y$ eqn of the conce  conic $\frac{1}{Y} = 1 + e\cos\theta$ Soln: $\frac{1}{Y} = 1 + e\cos\theta$ |
|     | Find whe property of the come  conic = 1+ecoso  Soln:  Grace:  L = 1+ecoso                                             |
| (F) | Find whe property of the come  conic = 1+ecoso  Soln:  Grace:  L = 1+ecoso                                             |
|     | Find whe property of the come  conic = 1+ecoso  Soln:  Grace:  L = 1+ecoso                                             |
|     | Phon - 6  Find the $P-Y$ eqn of the conce  conic $\frac{1}{Y} = 1 + e\cos\theta$ Soln: $\frac{1}{Y} = 1 + e\cos\theta$ |

$$\frac{dr}{d\theta} = \frac{-1}{(1 + e \cos \theta)^2} \left( e \left( - \frac{1}{5} \ln \theta \right) \right)$$

$$\frac{dr}{d\theta} = \frac{e \ln \theta}{(1 + e \cos \theta)^2} \left( e \left( - \frac{1}{5} \ln \theta \right) \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{dr}{d\theta} \right)^2$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

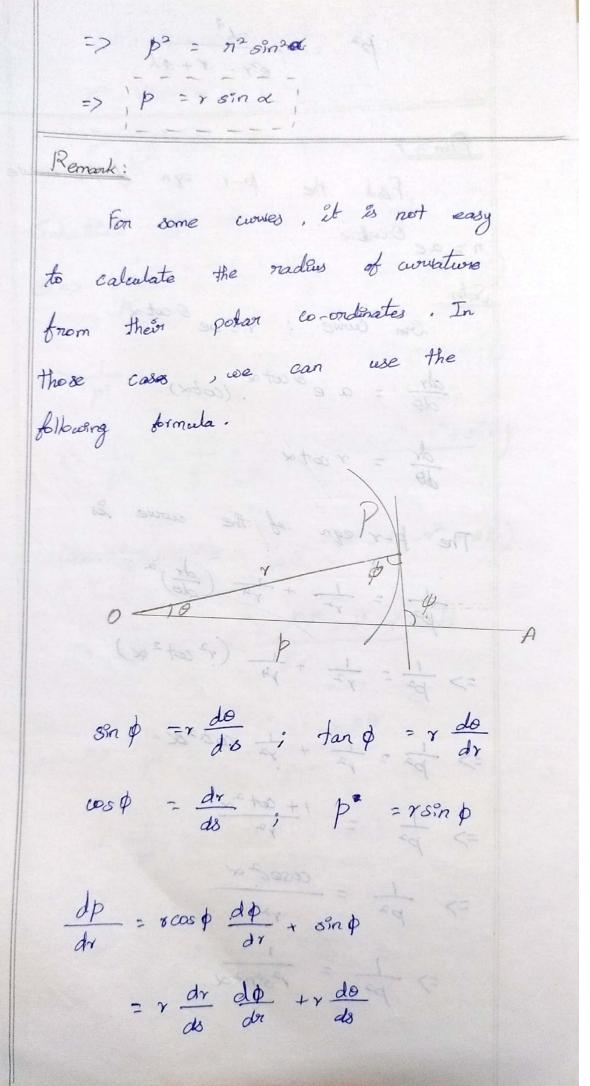
$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$


$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left( \frac{e^2 l^2 \sin^2 \theta}{(1 + e \cos \theta)^4} \right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2} + \frac$$

|                  | $b^2 = \frac{2\lambda^2}{6\gamma - r + a\lambda}$                                                                                        |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| See tun          | d the p-r agn of the come                                                                                                                |
| Soln:<br>Om      | Come: reae octa                                                                                                                          |
|                  | = a e cot x (cotx) and a grandly                                                                                                         |
| The p-           | = rootx<br>regn of the wowe 2s                                                                                                           |
| 102              | $= \frac{1}{r^2} + \frac{1}{r^4} \left( \frac{dr}{d\theta} \right)^2$ $= \frac{1}{r^2} + \frac{1}{r^4} \left( r^2 \cot^2 \alpha \right)$ |
| => \frac{1}{p^2} | = 12 + 12 apt 20 - 188                                                                                                                   |
|                  | $= \frac{1 + \cot^2 \alpha}{r^2}$ $= \cos^2 \alpha$                                                                                      |
| => =>            | $\frac{1}{1} = \frac{\cos^2 \alpha}{\sin^2 \alpha}$ $\frac{1}{1} = \frac{1}{1}$ $\frac{1}{1} = \frac{1}{1}$                              |
| -/               | $\frac{1}{p^2} = \frac{1}{r^2 s^2 n^2 \alpha}$                                                                                           |



| (m)   | $= \gamma \frac{d\phi}{ds} + \gamma \frac{d\theta}{ds}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nato. | = r d (\$ 8+\$)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| de    | dp - r dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lelon | do do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | => \frac{1}{V} \tag{ds}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | $= \frac{dp}{ds} = r \frac{dr}{dp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2     | $= \left( \begin{array}{c} e = r \frac{dr}{dp} \\ \end{array} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Phm-8 Find the radius of auwature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | of the cardiod r=a (1-coso) Prove that e sconstant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | In Phm-1 we shown that the p-r eqn of the gn curve is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | $p^{-\gamma} = \frac{\gamma^3}{\sigma^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | $= \frac{1}{2} \left( \frac{a^2}{a^2} + \frac{a^2}{a^2} \right)^2 + \frac{a^2}{a^2} + \frac{a^2}{a^2$ |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|                         | Diff win to pie get $\rho = \frac{3}{3} \cos r$                                            |
|-------------------------|--------------------------------------------------------------------------------------------|
|                         | $4ap = 3r^2 \frac{dr}{dp}$ $P^2 = \frac{h}{q} \sigma \sigma r$                             |
|                         | $4ap = 3x \cdot y \frac{dr}{dp} \qquad \frac{p^2}{r} = \frac{4}{9} aa$                     |
|                         | $\frac{4\alpha p}{3r} = r \frac{dr}{dp}$ $\frac{p^2}{r} = \frac{8\alpha}{9} = \frac{1}{2}$ |
|                         | $\rho = \frac{4ap}{3r}$                                                                    |
|                         | $e = \frac{4a}{3r} \left( \frac{r^3}{a^2} \right)^{\frac{1}{2}}$                           |
|                         | $e = \frac{4a}{37} \frac{\gamma^{3/2}}{\sqrt{2} \cdot \sqrt{a}}$                           |
|                         | P = 2 16 16 16 16 18 16 18 16                                                              |
|                         | $e = \frac{2}{3}\sqrt{2}a^{3}$                                                             |
|                         | Pbm-9                                                                                      |
|                         | Find the gradius of convature                                                              |
|                         | of the curve $\eta^2 = a^2 s_1^2 n = 0$                                                    |
|                         | Saln: Gin curve: 12 = 28in 20                                                              |
|                         | Diff conte to 0, we get.                                                                   |
| 4 minutes of the second | Scanned with CamScanne                                                                     |

$$\frac{dr}{d\theta} + \frac{1}{2} a^{2} \cos \theta \theta (a)$$

$$\Rightarrow \frac{dr}{d\theta} = \frac{a^{3} \cos \theta \theta}{hr}$$

$$\Rightarrow \frac{dr}{d\theta} = \frac{a^{3} \cos \theta \theta}{r}$$

$$\Rightarrow \frac{dr}{d\theta} = \frac{a^{3} \cos \theta \theta}{r}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{1}{r^{2}} + \frac{1}{r^{4}} \left(\frac{dr}{d\theta}\right)^{2}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{1}{r^{2}} + \frac{1}{r^{4}} \left(\frac{a^{4} \cos^{2} a \theta}{r^{6}}\right)$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{a^{4} \sin^{2} a \theta}{r^{6}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{a^{4} \cos^{2} a \theta}{r^{6}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{a^{4} \cos^{2} a \theta}{r^{6}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{a^{4} \sin^{2} a \theta}{r^{6}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{a^{4} \cos^{2} a \theta}{r^{6}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{a^{4} \sin^{2} a \theta}{r^{6}}$$

$$\Rightarrow \frac{1}{p^{2}} = \frac{a^{4} \cos^{2} a \theta}{r^{6}}$$

$$\Rightarrow \frac{1}{$$

| $\Rightarrow \frac{dp}{dr} = \frac{3r^{2}}{a^{2}} \qquad \frac{dp}{dr} = \frac{3r}{a^{2}}$ $\Rightarrow \frac{1}{r} \frac{dp}{dr} = \frac{3r}{a^{2}} \qquad \frac{1}{r} \frac{dp}{dr} = \frac{3r}{a^{2}}$ $\Rightarrow r \frac{dr}{dp} = \frac{a^{2}}{3r}$ $\Rightarrow \frac{1}{r} \frac{dp}{dr} = \frac{a^{2}}{3r}$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pbm - co.                                                                                                                                                                                                                                                                                                             |
| Find the pedal eqn of the wave $x^2 + y^2 = 2ax$ and deduce its radius of curvature.                                                                                                                                                                                                                                  |
| Soln: Obviously the gn eqn represents                                                                                                                                                                                                                                                                                 |
| the eqn of the circle.                                                                                                                                                                                                                                                                                                |
| Put $x = n \cos \theta$ $\theta$ $y = n \sin \theta$                                                                                                                                                                                                                                                                  |
| .: n <sup>2</sup> 2 sar coso                                                                                                                                                                                                                                                                                          |
| => r = 2a coso in the polar eqn                                                                                                                                                                                                                                                                                       |
| of the wide.                                                                                                                                                                                                                                                                                                          |
| Scanned with CamScanner                                                                                                                                                                                                                                                                                               |

The p-r eqn of the gn curve is

$$\frac{1}{p} \pm \frac{1}{p^2} + \frac{1}{r^4} \left( \frac{dr}{d\theta} \right)^2$$

$$\frac{1}{p^3} = \frac{1}{r^2} + \frac{1}{r^4} \left( \frac{dr}{d\theta} \right)^2$$

$$\frac{1}{p^3} = \frac{r^2 + 4a^3 \sin^2 \theta}{r^4}$$

$$\Rightarrow \frac{1}{p^2} = \frac{4a^3}{r^4}$$

$$\Rightarrow \frac{1}{p^2} = \frac{4a^3}{r^4}$$

$$\Rightarrow \frac{1}{p^2} = \frac{r^2}{r^4}$$

$$\Rightarrow \frac{1}{p^2} = \frac{r^2}{r^4}$$

$$\Rightarrow \frac{1}{p^2} = \frac{r^2}{r^4}$$

$$\Rightarrow \frac{1}{p^2} = \frac{r^2}{r^4}$$

$$\Rightarrow \frac{1}{r} = \frac{1}{r}$$

$$\Rightarrow \frac{1}{r}$$

| P = a / a                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phm -11 Fond the pedal egn of the                                                                                                                                                                                                                                                                                                                       |
| cove n° = ansinno . Hence find the                                                                                                                                                                                                                                                                                                                      |
| nadas of acovature.  Sodn:                                                                                                                                                                                                                                                                                                                              |
| In Phm-3, we shown that  the p-r eqn of the gn awwe &                                                                                                                                                                                                                                                                                                   |
| $D_{iff} = \frac{\gamma^{n+1}}{\alpha^{n}}$ $D_{iff} = \frac{1}{\omega_{i}} = \frac{1}{\alpha^{n}}$ $\sum_{i=1}^{n} \frac{1}{\omega_{i}} = \frac{1}{\alpha^{n}}$ $\sum_{i=1}^{n} \frac{1}{\alpha^{n}} = \frac{1}{\alpha^{n}}$ $\sum_{i=1}^{n} \frac{1}{\alpha^{n}} = \frac{1}{\alpha^{n}}$ $\sum_{i=1}^{n} \frac{1}{\alpha^{n}} = \frac{1}{\alpha^{n}}$ |
| Diff w. n to $Y$ , we get $\frac{dP}{dY} = \frac{1}{a^n} \frac{(n+1)}{n+1} \frac{1}{1}$                                                                                                                                                                                                                                                                 |
| $\frac{dr}{dr} = \frac{1}{a^n} (n+1) r^n$                                                                                                                                                                                                                                                                                                               |
| = Lan (nAT) an sinno                                                                                                                                                                                                                                                                                                                                    |
| $\Rightarrow \frac{1}{r} \frac{dp}{dr} = \frac{(n+1)r}{an} \frac{1}{r}$                                                                                                                                                                                                                                                                                 |
| $\Rightarrow \frac{1}{r} \frac{dp}{dr} = \frac{(n+i)r^{n-1}}{a^n}$                                                                                                                                                                                                                                                                                      |
| Coommad with Court Coom                                                                                                                                                                                                                                                                                                                                 |

Phone 18

Phone 18

Find the nadius of aurvature

for the general conic

$$\frac{1}{1} = 1 + e \cos \theta$$
Solution

In phone 6, we shown that

In phone 8 aurva is

the p-r eqn of the 8n aurva is

$$\frac{1}{1} = \frac{1}{1} \frac{1}{1$$

$$P \frac{dp}{dr} = \frac{1^{3}}{(e^{2}r - r + al)^{2}}$$

$$\Rightarrow \frac{dp}{dr} = \frac{1}{p} \frac{1^{3}}{(e^{2}r - r + al)^{2}}$$

$$\Rightarrow \frac{dr}{dp} = \frac{pr(e^{2}r - r + al)^{2}}{1^{3}}$$

$$\Rightarrow \frac{dr}{dp} = \frac{r(e^{2}r - r + al)^{2}}{1^{3}} \left(\frac{1^{2}r}{e^{2}r - r + al}\right)^{2}$$

$$\Rightarrow \frac{e}{r^{3}} \left(\frac{1^{2}r}{e^{2}r^{2} - r + al}\right)^{3}$$

$$\Rightarrow \frac{e}{r^{3}} \left(\frac{e^{2}r^{2} - r + al}{r^{3}}\right)^{3}$$

$$\Rightarrow \frac{e}{r^{3}} \left(\frac{e^{2}r^{2} - r + al}{r^{3}}\right)^{3}$$

Him Find the p-r agn nsin0+a=0 Soln: Gin Course: 71 sino + a=0 Diff w. n to o, we get  $\eta \cos \theta + \sin \theta \frac{dr}{dR} = 0$ esino dr =- x 2000  $\frac{dr}{d\theta} = \frac{-r\cos\theta}{\sin\theta} = -r\cot\theta$  $\frac{dr}{d\theta} = -r \cot \theta$ The por egn of the curve is  $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2$  $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^n} \left( r^2 \cot^2 \theta \right)$  $\frac{1}{p^2} = \frac{1}{r^2} + \frac{\cot 2}{r^2}$  $\frac{1}{10^2} = \frac{1 + \cot^2 \theta}{1 + \cot^2 \theta} = \frac{\csc^2 \theta}{1 + \cot^2 \theta}$  $\frac{1}{p^2} = \frac{1}{\sin^2 \theta} r^2$ p2 = 01n20 r2 p2 = Sin 20 . a2 . sin 20

| $b^2 = a^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| $b = \pm a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N             |
| p+d =0 Min m = suma mic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7             |
| 2) Find the $p-r$ eggs $r=asin\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| Gin Corne 8 = asin 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| Dell wants of we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |
| $\frac{dr}{ds} = a \cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| The p-r eqn of the curve &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |
| $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^{2/3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| be commended in the case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| $\frac{1}{p^2} = \frac{r^2 + a^2 \cos^2 \theta}{r^4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
| $\frac{1}{b^2} = \frac{a^2 \sin^2 \theta + a^2 \cos^2 \theta}{a^2 \cos^2 \theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |
| 1+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
| $\frac{1}{p^{\alpha}} = \frac{\alpha^{\alpha}}{r^{\alpha}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |
| $p^2 = \frac{r^4}{a^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |
| $p = \frac{r^2}{a^2} a^2 = \frac{1}{a^2} a^2 = \frac{1}{a$ |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |
| Coopped with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | th CamScanner |

A) Food the p-r agn nm = ancosmo W. Shitien Gin Couve ym = am casmo Talking by on both sides, we get. log m = log (em cosmo) mby r = leg am + leg cosmo mlogr = mloga + log cosmo Diff us 7 to 8. we get, m - dr = (-sinma) (m) I dr = - tanmo  $\frac{dr}{d\theta} = -r \tan m\theta$ The p-r eqn of the curve &  $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left( \frac{dr}{d\theta} \right)^2$ p = 1 + ( r2 tan2 mg) 1 to 1 to a south (a) (as me)  $\frac{1}{p^2} = \frac{\sec^2 m\theta}{\pi^2}$ 

|           | $\frac{1}{p^2} = \frac{1}{\cos^2 m\theta n^2}$                                                         |
|-----------|--------------------------------------------------------------------------------------------------------|
|           | $\frac{1}{p^2} = \frac{1}{r^2} = \frac{1}{\binom{2m}{am}} 2$                                           |
|           | $\frac{1}{p^2} = \frac{a^m}{r^{\alpha}} \left(\frac{a^m}{r^m}\right)^{\alpha}$                         |
|           | $\frac{1}{p^2} = \frac{2m}{r^{2+2m}}$                                                                  |
|           | $\frac{1}{6^2} = \frac{a^{2m}}{a^{2(m+1)}}$                                                            |
|           | $\frac{1}{\sqrt{p^2}} = 2\left(\frac{a^m}{\sqrt{m+1}}\right)^m$                                        |
|           | $\frac{a}{p} = \frac{a^m}{r^{(m+1)}}$ $\frac{r^{(m+1)}}{a^m}$                                          |
|           | Be away   $pa^m = q^{(m+1)}$                                                                           |
| 6)<br>H.w | Find the $p$ -regn $r^2\cos 2\theta = a^2$                                                             |
| H         | On Curve no cosso = a                                                                                  |
|           | Diff $\omega$ in to $O$ we get, $n^2(-3in \omega O)(\omega) + \cos \omega O \approx \frac{dr}{dO} = 0$ |
|           | $2 \times \cos 2000 dr = 2 \pi^2 \sin 20$                                                              |
|           | Scanned with CamScanr                                                                                  |

|         |                                    | 4              |              |  |
|---------|------------------------------------|----------------|--------------|--|
|         | $\frac{dr}{d\theta} = \frac{2}{2}$ | r sindo        |              |  |
|         | do - rt                            |                |              |  |
|         | do - To                            | an ab          |              |  |
| The     | p-r egn d                          | the cou        | se is        |  |
| H H     | 2 = 12 +                           |                |              |  |
|         |                                    |                |              |  |
|         | 1 = 1 + -                          | 74 (8 Ean      | 20)          |  |
|         | 1 = 1+6                            | and 20         |              |  |
|         | p2 = ra                            | = ah           |              |  |
|         | 1 = 3000                           | = alo          |              |  |
| E       | sure short                         | har legal and  |              |  |
|         | 1 = 1<br>p2 = 05°20                | - 1<br>2       |              |  |
|         | (ab)                               | + 54           | 4            |  |
|         | 1 = 1                              | (2)2           |              |  |
|         | AY S                               |                | ed .         |  |
| Hat Hat | 1 2 1                              | 74             |              |  |
|         | Programme of the second            | a <sup>4</sup> | N            |  |
|         | 102 = a4                           |                |              |  |
|         | S. C.                              | + - =          |              |  |
|         | p = ad                             |                |              |  |
|         | 2                                  | + = = =        |              |  |
|         | $p = \frac{a}{Y}$                  |                |              |  |
|         | ipr = a                            | + -4 = =       | P            |  |
|         |                                    |                | Scanned with |  |

| H.00) | Find the pegn of the curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ·Hich | $\eta \Theta = a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | Soln:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | Gn ave ro=a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | Ditto w. n to O, we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | $n + \theta \frac{dr}{d\theta} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | (8 mod 8) The state of the stat |
|       | $\theta = -r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | $\frac{dr}{d\theta} = \frac{-r}{\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | The p-r egn of the curve is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left( \frac{dr}{d\theta} \right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | fe - rd + rh (do)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 1 + (10) + PK ( x2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       | $p^2 = rd + rh \left(\frac{r}{o^2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | $\frac{1}{p^2} = \frac{1}{p^2} + \frac{1}{p^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | P 12 12 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | $\frac{1}{62} = \frac{1}{12} + \frac{10}{12} = \frac{1}{62}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | The state of the s |
|       | 1 = 1 to pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 1 p2 = 12 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Scanned with CamSca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|   | Evolute and Involute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Differ: Evolute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | The locus of center of curvalure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | for a curve is called the evolute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | of the curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | S.T & the parabola of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | at the pt to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | $e = -aa(1+t^2)^{\frac{a}{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | la constant de la con |
|   | $x = 2a + 3at^3$ . Deduce the eqn of $y = 2at^3$ . Deduce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | evolute.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Soln: In $Pbm-1$ of Unit $I$ ; we shown $(1+t^2)^{-3/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | In $16m-1$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$   |
|   | that $P = -2a(1+t^2)^{-3/2}$ $x = 2a + 3at^2 - > 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | $\gamma = -2at^3 \longrightarrow ②$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | Eleminating of form × and ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | Ek minating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | $0 \Rightarrow x = 2a + 3at^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $=> \times -2\alpha = 3\alpha t^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | $=>\frac{3x-2a}{3a}=t^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|   | $= \sum \left(\frac{x - 2a}{3a}\right)^{3} = \left(\frac{x}{3a}\right)^{3} = t^{3}$ $y^{2} = \frac{1}{3a} \left(\frac{x - 2a}{3a}\right)^{3}$ $y^{2} = \frac{1}{37a} \left(\frac{x - 2a}{3a}\right)^{3}$ $y^{3} = \frac{1}{37a} \left(x - 2a\right)^{3}$ $27ay^{3} = 1 \left(x - 2a\right)^{3}$ The Locus of $\left(x, y\right)$ is |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | 27 ag = 4 (x-2a)3                                                                                                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                                                                                                                     |
|   | Phon-14  Find the evolute of the ellipse  \( \frac{2}{a} + \frac{9}{b} = 1 \)  Soln:  W. K. The parametric eqn of the  Chepse &  \( \kappa = access \), \( y = bc) = bcoss \)  \( \delta = -access \)  \( \delta = -access \)  \( \delta = bcoss \)                                                                                 |

$$\frac{ds}{dx} = \frac{ds}{ds} \cdot \frac{ds}{dx}$$

$$= \frac{b \cdot asso}{-asins}$$

$$= -\frac{b}{a^2 sin^3 \theta} \cdot \frac{ds}{ds} \cdot \frac{ds}{ds} - asins$$

$$= -\frac{b}{a^3 sin^3 \theta} \cdot \frac{ds}{ds} \cdot \frac$$

$$\Rightarrow x = \frac{a^{2}\cos \theta - a^{2}\cos^{2}\theta - b^{2}\cot^{2}\theta \cos \theta}{a}$$

$$= \frac{a\cos \theta (1 - \sin^{2}\theta) - b^{2}\cos^{2}\theta \cos \theta \sin^{2}\theta}{\sin^{2}\theta} \cos \theta \sin^{2}\theta}$$

$$\Rightarrow x = \frac{a^{2}\cos^{2}\theta - b^{2}\cos^{2}\theta}{a}$$

$$\Rightarrow x = \frac{b\sin \theta + (a^{2} + b^{2}\cot^{2}\theta)}{a^{2}\sin^{2}\theta}$$

$$\Rightarrow x = \frac{a^{2}\sin^{2}\theta - b^{2}\cot^{2}\theta}{b}$$

$$\Rightarrow x = \frac{a^{2}\cos^{2}\theta - b^{2}\cot^{2}\theta}{b}$$

$$\Rightarrow x = \frac{a^{2}\sin^{2}\theta - b^{2}\cot^{2}\theta}{b}$$

$$\Rightarrow x = \frac{a^{2}\sin^{2}\theta - b^{2}\cot^{2}\theta}{b}$$

$$\Rightarrow x = \frac{a^{2}\cos^{2}\theta - b^{2$$

From 
$$O$$
 and  $O$ 

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

$$Sin O = \begin{bmatrix} -y \\ 3^2 - b^2 \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

To eliminate o, Spenaring and adding we get. 005°0 + sin20 =1  $\left(\frac{a \times (-b)^{3}}{a^{2}-b^{2}}\right)^{3} + \left(\frac{-by}{a^{2}-b^{2}}\right)^{3} = 1$  $(ax)^{\frac{1}{3}} + (by)^{\frac{1}{3}} = (a^2 - b^2)^{\frac{1}{3}}$ The Lowe of (x, y) is (ax) 3 + (by 3 = (a2-b2)3 Pom - 15 5-The evolute of a cycloid  $x = a(\theta - 8in\theta)$   $y = a(1 - cos \theta)$  is another cyclesd. Soln: Gin ave x-a(0-sino) 8 = a(1-coso) dr - a (1-1050) do = a sino  $\frac{dy}{dx} = \frac{as:no}{a(1-asso)} = \frac{s:no}{1-asso}$ 20 8,00% 000 0 - acot 0/2

$$\frac{d^{3}}{dx^{2}} = \frac{d}{d\theta} \left( \cot^{9} 2 \right) \frac{d\theta}{dx}$$

$$= \left( -\cos^{2} \frac{9}{2} \right) \frac{d}{dx} \left( -\cos^{9} \right)$$

$$= \frac{-\cos^{2} \frac{9}{2}}{d\alpha} \left( 1 - \cos^{9} \right)$$

$$= \frac{-1}{2\alpha} \left( \sin^{9} \frac{9}{2} \right) \left( \sin^{9} \frac{9}{2} \right)$$

$$= \frac{-1}{2\alpha} \left( \sin^{9} \frac{9}{2} \right) \left( \sin^{9} \frac{9}{2} \right)$$

$$= \frac{-1}{2\alpha} \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right) \left( \cot^{9} \frac{9}{2} \right)$$

$$= \frac{-1}{2\alpha} \left( \cos^{9} \frac{9}{2} \right) \left( \cot^{9} \frac{9}{2} \right) \left( \cot^{9} \frac{9}{2} \right) \left( \cot^{9} \frac{9}{2} \right)$$

$$= \frac{-1}{2\alpha} \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right)$$

$$= \frac{-1}{2\alpha} \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right)$$

$$= \frac{-1}{2\alpha} \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{9}{2} \right)$$

$$= \frac{-1}{2\alpha} \left( \cos^{9} \frac{9}{2} \right) \left( \cos^{9} \frac{$$

$$\Rightarrow x = a(0-\sin\theta) + \cos \sin\theta$$

$$\Rightarrow x = a\theta - a\sin\theta + 2a\sin\theta$$

$$\Rightarrow x = a\theta + a\sin\theta$$

$$\Rightarrow x = a(0+\sin\theta)$$

$$\Rightarrow y = y + \frac{(1+3^2)}{3^2}$$

$$\Rightarrow y = a(1-\cos\theta) + \frac{(1+\cos^2\theta_3)}{4a\sin^2\theta_3}$$

$$\Rightarrow y = a(1-\cos\theta) + -\cos^2\theta_3 + x + a\sin^2\theta_3$$

$$\Rightarrow y = a(1-\cos\theta) - ha\sin^2\theta_3$$

$$\Rightarrow y = a(1-\cos\theta) - aa(a\sin^2\theta_3)$$

$$\Rightarrow y = a(1-\cos\theta) - aa(a\sin^2\theta_3)$$

$$\Rightarrow y = a(1-\cos\theta) - aa(1+\cos\theta)$$

The Locus & of ax, y) \*x = a (0 +sino), 9 = -a (1-000) this is also a cycloid. Pbm-16 8 S.T the evolute of the hyperbala  $\frac{x^2}{a} - \frac{y^2}{b} = 1 \quad \text{is } (ax)^{\frac{2}{3}} - (bg)^{\frac{2}{3}} = (a^2 + b^2)^{\frac{2}{3}}$ Soln: W.KT the parametric eqn of the hypothola x = asecro, 3= btano  $\frac{dx}{d\theta} = asecotand = \frac{d\theta}{d\theta} = bsecco$ dy = bsecto - aseco tano  $=\frac{b}{a}\frac{\sec\theta}{\tan\theta}$  $= \frac{b}{a} \quad \frac{\cos \theta}{\cos \theta} \quad \frac{\cos \theta}{\sin \theta}$ - a + 51n0 dy - b coseco

 $\frac{d^2y}{dx^2} = \frac{d}{d\theta} \left( \frac{b}{a} \csc \theta \right) \frac{d\theta}{dx}$ = b coseco coto x asceptano - -b/a -in0 x - sin0 A (coso sino coso = -b (050 × 005°0 × 005°0 asino  $=\frac{-b}{a^2}\frac{\cos^3\theta}{\sin^3\theta}$  $\frac{d^2g}{dx^2} = \frac{-b}{a^2} \cot^2 \theta$ 

$$= \frac{a^{3} \sec^{3} 0 + b^{3} \sec^{3} 0}{a}$$

$$\Rightarrow x = \frac{a^{3} \sec^{3} 0 + b^{3} \sec^{3} 0}{a}$$

$$\Rightarrow x = \frac{(a^{3} + b^{3})(\sec^{3} 0)}{a}$$

$$\Rightarrow y = b \tan \theta + \frac{(1 + b^{3})}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)}{b}(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \tan \theta - \frac{(a^{3} + b^{3})(\cot^{3} 0)$$

$$\Rightarrow y = b \cot^{3} 0$$

$$\Rightarrow$$

$$= \frac{b^{2} \tan \theta}{b} \left(1 - \sec^{2}\theta\right) - a^{2} \tan^{2}\theta$$

$$= \frac{b^{2} \tan^{2}\theta}{b} - a^{2} \tan^{2}\theta$$

$$= \frac{a^{2} + b^{2}}{b} \tan^{2}\theta - a^{2} \tan^{2}\theta$$

$$= \frac{a^{2} + b^{2}}{b} \tan^{2}\theta - a^{2} \tan^{2}\theta$$

$$= \frac{a^{2} + b^{2}}{b} \tan^{2}\theta - a^{2} \tan^{2}\theta$$

$$= \frac{a^{2} + b^{2}}{a^{2} + b^{2}}$$

$$= \frac{a^{2} + b^{2}}$$

| $\frac{a \times \sqrt{23}}{a^2 + b^2} = 1$                                                                                              |     |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\frac{(a \times )^{\frac{2}{3}}}{(a^{2} + b^{2})^{\frac{2}{3}}} = \frac{(3 \times )^{\frac{2}{3}}}{(a^{2} + b^{2})^{\frac{2}{3}}} = 1$ |     |
| $(a \times)^{\frac{2}{3}} - (b \times)^{\frac{2}{3}} = (a^2 + b^2)^{\frac{2}{3}}$                                                       |     |
| The Locues of (x, y) is                                                                                                                 |     |
| $(ax)^{\frac{1}{3}} - (by)^{\frac{2}{3}} = (a^{2} + b^{2})^{\frac{2}{3}}$                                                               |     |
| Pbm-17 2000                                                                                                                             |     |
| S.T the eqn of the evolute                                                                                                              |     |
| of the aowe way = ad . &                                                                                                                |     |
| $(x+9)^{3/3} - (x-9)^{3/3} = aa^{2/3}$                                                                                                  |     |
| Soln:                                                                                                                                   |     |
| Gn Curve dry zad                                                                                                                        |     |
| Deff w. n to x , we get                                                                                                                 |     |
| $g\left(x\frac{dy}{dx}+y\right)=0$                                                                                                      |     |
| $x \frac{dy}{dx} = -y$                                                                                                                  |     |
| dy = -y                                                                                                                                 |     |
| Scanned with CamScanr                                                                                                                   | 201 |

| dry (x) dy +3                                                   |
|-----------------------------------------------------------------|
| dry = (-x) (-3/x) +3                                            |
| dry = 20                                                        |
| Mb cor $X = x - y, (1+y, 2)$                                    |
| $=> \times = \times + \frac{(9/2)(i+3/2)}{2/2}$                 |
| $= \chi + \frac{\left(\chi^2 + 9^2\right)}{\chi^2}$             |
| $=) \times = \times + \frac{\chi^2 + y^2}{dx}$                  |
| $=) \times = \frac{\partial x^{2} + x^{2} + y^{2}}{\partial x}$ |
| $2 \times \times = \frac{3x^2 + y^2}{ax}$                       |
| Also y = 9 + (1+9,2)                                            |
| Scanned with CamScanner                                         |

$$= y = y + \frac{(1 + y^{2})}{y^{2}} = y + \frac{(1 + y^{2})}{y^{2}} = y + \frac{y^{2} + y^{2}}{y^{2}} = \frac{y^{2} + y^{2} + y^{2}}{y^{2}} = \frac{y^{2} + y^{2} + y^{2}}{y^{2}} + \frac{y^{2} + y^{2}}{y^{2}} = \frac{y^{2} + y^{2} + y^{2}}{y^{2}} = \frac{y^{2} + y^{2} + y^{2} + y^{2}}{y^{2}} = \frac{y^{2} + y^{2} + y^{2} + y^{2}}{y^{2}} = \frac{y^{2} + y^{2}}{y^{2}} = \frac{y^{2$$

Y = a sin 3 % Find the p-regn. Gn Coure, Y: a Sin3 8/3 Diff w n to r, we get dr = a 3 sin 3 3 cos 3 x /3 = a 89 n 2 % cos 8/3 The p-r egn of the worke is  $\frac{1}{b^2} = \frac{1}{r^2} + \frac{1}{r^4} \left( \frac{dr}{d\theta} \right)^2$ 1 = 1 + 1 ( & 89n 4 9/3 (cos 2 8)  $\frac{1}{p^2} = \frac{1}{2} + a^2 \sin^4 \frac{9}{3} \cos^2 \frac{9}{3}$ 1 = a2sin693 + a2sin 483 cos293 1 = a sin + 0 (sin & 0 + cas 20)  $\frac{1}{p^2} = \frac{a^2 \sin^4 \theta_3}{\gamma^4}$ 

$$\frac{1}{p^2} = \frac{(a\sin^3 \frac{3}{2})(a\sin^3 \frac{1}{2})}{r^3}$$

$$\frac{1}{p^2} = \frac{ra\sin^3 \frac{1}{2}}{r^3}$$

$$\frac{1}{p^2} = \frac{a\sin^3 \frac{1}{2}}{r^3}$$

$$\frac{1}{p^2} = \frac{a\sin^3 \frac{1}{2}}{r^3}$$

$$\frac{1}{p^3} = a\left(\frac{r}{a}\right)^{\frac{1}{2}}$$

$$\frac{dr}{d\theta} = \frac{3r^2 \cos 2\theta}{2r \sin d\theta}$$

$$\frac{dr}{d\theta} = \frac{-3r^2 \cos 2\theta}{2r \sin d\theta}$$

$$\frac{dr}{d\theta} = -r \cot d\theta$$
The p-r egn of the curve is
$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left(\frac{dr}{d\theta}\right)^{2r}$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \left(r^2 \cot^2 2\theta\right)$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \cot^2 2\theta$$

$$\frac{1}{p^2} = \frac{1}{r^2} \cot^2 2\theta$$

$$\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^2} \cot^2 2\theta$$

$$\frac{1}{p^2} = \frac{1}{r^2} \cot^2 2\theta$$

|    | $p^{2}y^{2}=a^{4}$                                                                                            |
|----|---------------------------------------------------------------------------------------------------------------|
|    | pr =+ad                                                                                                       |
|    | pr tad = 0                                                                                                    |
| J. | Find the nadius of avwature                                                                                   |
| 2. | Find the nadius of convature  r cos 2 0 = a                                                                   |
|    | Soln:                                                                                                         |
| •  | Gin Cowe de la                                                            |
|    | 1 2 2 cos % (-Sin %) + cos 40 dr = 0                                                                          |
|    | cos de dr de visin grasa                                                                                      |
|    |                                                                                                               |
|    | $\frac{dr}{d\theta} = \frac{r\sin\theta_{\omega}\cos\theta_{\omega}}{\cos^{2}\theta_{\omega}}$                |
|    |                                                                                                               |
|    | $\frac{\partial r}{\partial \theta} = r \tan \theta_2$                                                        |
|    | The p-regn of the come is                                                                                     |
|    |                                                                                                               |
|    | $\frac{1}{p^{\alpha}} = \frac{1}{r^{\alpha}} + \frac{1}{r^{\alpha}} \left(\frac{dr}{d\theta}\right)^{\alpha}$ |
|    | $\frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left( r^2 \tan^2 \frac{9}{2} \right)$                         |
|    | 1 = 1 tan 2 0                                                                                                 |
|    | $\frac{1}{\cancel{p}} = \frac{1 + \tan^2 \frac{9}{3}}{\sqrt{3}}$                                              |
|    | $\frac{1}{p^{\alpha}} = \frac{\sec^{\alpha}\theta_{\alpha}}{r^{\alpha}}$                                      |
|    |                                                                                                               |

$$\frac{1}{p^{2}} = \frac{v_{a}}{v^{2}}$$

$$= \frac{v_{a}}{v^{2}}$$

$$= \frac{v_{a}}{v^{2}}$$

$$= \frac{v_{a}}{v^{2}}$$

$$= \frac{1}{a^{2}}$$

$$\frac{1}{p^{2}} = \frac{1}{a^{2}}$$

$$\frac{1}$$

A) S.T the property of the active in 
$$r^2 = a^2$$
 as so is  $p^2$ .

Solution

Solution

Gen Conve

 $r^2 = a^3 \cos 2a$ 

Diff w.  $\pi$  to  $\theta$ , we get

 $ar \frac{dr}{d\theta} = a^3 (sin a \theta)(a)$ 
 $\frac{dr}{d\theta} = -\frac{aa^3 sin a \theta}{ar}$ 

The property of conve is

 $\frac{dr}{d\theta} = \frac{a^3}{r^3} + \frac{1}{r^3} \left(\frac{dr}{d\theta}\right)^{a^3}$ 
 $\frac{1}{p^2} = \frac{1}{r^3} + \frac{1}{r^3} \left(\frac{at}{r^3} sin^2 a \theta\right)$ 
 $\frac{1}{p^2} = \frac{r^3}{r^6} + \frac{a^4}{r^6} sin^2 a \theta$ 
 $\frac{1}{p^2} = \frac{a^4}{r^6} (as^2 d \theta + sin^2 a \theta)$ 
 $\frac{1}{r^6} = \frac{a^4}{r^6}$ 

| N. Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\beta = \frac{\sqrt{3}}{a^{2}}$                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Diff w. n to pr , we get.                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{dP}{dr} = \frac{1}{2} 3r^{2}$                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{dp}{dr} = \frac{3r \cdot r}{a^2}$                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{1}{Y} \frac{dP}{dr} = \frac{3r}{a^2}$                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $r \frac{dr}{dp} = \frac{g^2}{3r}$                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{\partial}{\partial t} = \frac{\partial^2}{\partial t} \Big _{t=0}^{t=0}$               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pbm-18                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S.T the egn of the evolute of                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y = a (cost + leg tan t/a) and                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g = a sint is g = a singa                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the state te                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gin Curve x = a ( cos 1 mg)                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contrad of a sont on his = = = = = = = = = = = = = = = = = = =                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{dx}{dt} = o\left(-8int + \frac{1}{tan^2/3} xe^{-2\frac{\pi}{2}} \frac{1}{2}\right)$    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{dz}{dt} = a \left( -\sin t + \frac{\cos t_2}{\sin t_2} + \frac{1}{\cos^2 t_2} \right)$ |
| A CONTRACTOR OF THE PARTY OF TH | Scanned with CamScanner                                                                       |

$$\frac{de}{dt} = a \left( -\sin t + \frac{1}{a \sin t} \right)$$

$$= a \left( -\sin^{2} t + 1 \right)$$

$$= a \left( -\cos^{2} t + 1 \right)$$

$$= a$$

$$x = a \cos t + \log \tan t_{0}$$

$$\Rightarrow x = a \cos t + \log \tan t_{0}$$

$$\Rightarrow x = a (\cot t + \log \tan t_{0}) - a \frac{\sec^{3}t}{\sec^{3}t}$$

$$\Rightarrow x = a \cot t + a \log \tan t_{0} - a \cot t$$

$$\Rightarrow x = a \cot t + a \log \tan t_{0} - a \cot t$$

$$\Rightarrow x = a \log t \cot t_{0}$$

$$\Rightarrow$$

$$0 \Rightarrow \frac{x}{a} = \log \tan \frac{t}{3}$$

$$Taking \quad \text{articley} \quad \text{on} \quad \text{b.s.}, \quad \text{we got}$$

$$e^{\frac{t}{2}} = \tan^{\frac{t}{2}} e^{\frac{t}{2}} + e^{-\frac{t}{2}}$$

$$ash \quad \frac{x}{a} = \frac{1}{3} \left[ e^{\frac{t}{2}} + e^{-\frac{t}{2}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \tan \frac{t}{3} + (\tan \frac{t}{3})^{-1} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \tan \frac{t}{3} + \frac{1}{\tan \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^2 \frac{t}{3} + 1}{\tan^2 \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\sec^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\sec^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\sec^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\sec^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\sec^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\sec^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\sec^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}}{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{3} \left[ \frac{\tan^{\frac{t}{2}} \frac{t}{3}} \right]$$

$$cesh \quad \frac{x}{a} = \frac{1}{$$

|     | D = $y = a \cosh \frac{x}{a}$<br>The low of $(x, y)$ is                                                                                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | y = a cosh =                                                                                                                                                                                                                                                                                             |
|     | Defin:  If the evolute itself be regarded as the original curve, a curve of which it is the evolute is called an involute.                                                                                                                                                                               |
| Ha) | N=a0 find the p-r equ and the radios of aereature.  Soln:  Gin Curve: $\alpha r = a0$ Diff $\omega_{r}$ in to $\theta$ we get. $\frac{dr}{d\theta} = a$ The $p-r$ equ of the write $a$ $\frac{dr}{d\theta} = \frac{1}{r^{2}} + \frac{1}{r^{2}}$ $\frac{dr}{d\theta} = \frac{1}{r^{2}} + \frac{1}{r^{2}}$ |

Scanned with CamScanner

$$\frac{1}{7} \frac{dp}{dr} = \frac{f(r^2 + 2a^2)}{f(r^2 + a^2)^{\frac{3}{2}}2}$$

$$Y \frac{dr}{dp} = \frac{(f^2 + a^2)^{\frac{3}{2}}2}{(r^2 + aa^2)}$$

$$e = \frac{(a^2a^2 + a^2)^{\frac{3}{2}}2}{(a^2a^2 + aa^2)}$$

$$e = \frac{(a^2(a^2 + aa^2))^{\frac{3}{2}}2}{(a^2a^2 + aa^2)}$$

$$e = \frac{(a^2(a^2 + a_1))^{\frac{3}{2}}2}{a^2(a^2 + a_2)}$$

$$e = \frac{a^3(a^2 + a_2)^{\frac{3}{2}}2}{a^2(a^2 + a_2)}$$

$$e = \frac{a^3(a^2 + a_2)^{\frac{3}{2}}2}{a^2(a^2 + a_2)}$$

$$e = \frac{a^3(a^2 + a_2)^{\frac{3}{2}}2}{a^2(a^2 + a_2)}$$

Asymtotes Defn: If a strought line cuts a curve is two points at infinite distance from the Onigin & called an asymtotes to the curve. To Find the equations of the asymtotes of a plane algebracia avve. Let the egn of any curve of the nth dagnee be arranged in homogeneous sets of terms. Then it can be wretten as  $x^n \phi_n (3/x) + x^{n+1} \phi_{n+1} (3/x) +$  $\chi^{n-Q} \phi_{n-Q} (3/\chi) + \dots = 0 \longrightarrow 0$ Where  $\Phi_n(3/x)$  is an enfression of ith degree in (3/x). let us find the straight live y=mx+c outs the curve. Putting 3/x = m + 1/x in O. we have

x Pn (m+ 9x) + x n-1 pn-1 (m+ 4x) + .... 20 giving the about 8800 of the pts of Intasechin Expanding each torms by Taglor's theorem, we ghave,  $\gamma^{n}\phi_{n}(m) + x^{n-1} \int c\phi_{n}^{i}(m) + \phi_{n-1}(m) +$  $e^{n-2} \left[ \frac{c^2}{a_0^2} \phi_n''(m) + c.\phi_{n-1}'(m) + \phi_{n-2}(m) \right]$ +... =0 ->@ This is an eqn of the nth degree is x If on (m), the co-efficient -of the highest power of x be zero, then one not of @ in infinite of tusther we equate the co-officient of xn-1 es esto de (20) no sento => con (m) + o(n-1)(m) =0 In otherwords y=mx+c w:11 be an asymtote of -qn (m) =0 & ->(1) e \$i(m) + \$no (m) =0-5ii)

Since eqn (9) is of it degree, there are a value for m (say) The corresponding values of curve got from (55) as  $C_{i} = -\frac{\phi_{n-1}(m_{i})}{\phi_{n}(m_{i})}$  $C_2 = \frac{-\phi_{n-1}(m_2)}{\phi_n'(m_2)} \dots \text{ etc.}$ The 1 asymptotes of a curve O are J= M, x+C, y = m2x + c2 J= mnx+Cn sund st 43 - 8xy +11x 8 -6x3 + x+3 =0 Reele: In the highest degree terms put x = 1 and y=m. Thes gives an (m) =0 =>m is bound, From 9n-1 (m) in a similar manner and differentiate . Pn . (m) . Then the values of core got from

|       | $C = \frac{-\phi_{n-1}(m)}{\phi_{n}(m)}$ , by patting                                   |
|-------|-----------------------------------------------------------------------------------------|
| Sha   | m=m, 1m2, man                                                                           |
|       | Remark:  A curve of odd degree cannot  have an even number of real                      |
|       | aymptote.                                                                               |
| 3.07: | Phm - 19  Find the asymptotes of the cubic $y^3 - 6\pi y^2 + 11x^2y - 6x^3 + x + y = 0$ |
|       | Soln:                                                                                   |
| ph    | $y^3 - 6\pi y^2 + 11\pi^2 y - 6\pi^3 + x + y = 0$ The Highest degree terms are          |
|       | $y^3 - 6\pi y^2 + 11 \times^9 y - 6 \times^3$ By rule put $x = 1$ and $y = m$           |
| b.c.  | $\phi_{3m} = m^{3} - 6m^{3} + 11m - 6 = 0$                                              |
|       | volue of care got from.                                                                 |

$$m = 1, 0, 3$$

Also Also  $\phi_3'(m) = 3m^2 - |\phi_1(m)|$ 

Since there are no second degree

terms,  $\phi_3(m) = 0$ 

$$C = \frac{-\phi_2(m)}{\phi_3'(m)}$$

$$C = \frac{-\phi_2(m)}{\phi_3'(m)}$$

For  $m_2 = 0$ 

$$C = \frac{-\phi_2(m)}{\phi_3'(m)}$$

For  $m_3 = 3$ ,  $C_3 = \frac{-\phi_3(n)}{3(n)+10(n)+11}$ 

The asymbotic are

 $S = E$ 
 $S = EE$ 
 $S = EE$ 

Problem - do. Find the asymptotes of x3+2x3 - xy3 - 2y3 +4y3 + axy +9-1=0 Soln: Gen Curve: x3+2x9y-xy2-2y3+4y+3xy +y-1=0 The highest degree terms are x3 + 2x2y 3 - xy2 - 2y3 By rule put x=1 and y=m, weget \$3(m)=1+2m-m2-2m3=0 =) 2m3+m2-2m-1=0 =)  $2m(m^2-1).+r(m^2-1)=0$ (m²-1) (2m+1) =0 m2-1 50 (or) &m +1=0 m=1 m = ±1 \* m = ± 1, - 2 Abso \$\phi\_3'(m) = 2 - 2m - 6m^2 = 2 (1-m-3m)

the second degree terms are 432 + 2 24 By rule put x=1 and y=m \$2(m)=4 m2 + &m  $C = \frac{-\phi_2 \text{ cm}}{\phi_3' \text{ cm}}$  $C = \frac{-(4m^2 + 2m)}{2(1 - m - 3m^2)}$ FOOTM, = 1  $C_1 = \frac{-(4C_1) + 2C_1)}{2(1-1)}$  $=\frac{-(4+2)}{2(-3)}+3=\frac{-6}{-6}=1$ C, = 1 For  $m_2 = 1$   $\frac{-4(4(-1)^2 + 2(-1))}{2(1-(-1)-3(-1)^2)}$  $\frac{1}{(2+3)} = \frac{-2}{-2}$ + (m) 1 2 (2 4 - 3) C2 = 1

For 
$$m_3 = -\frac{1}{2}$$

$$G_3 = \frac{-\left(4\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)\right)}{2\left(1 - \left(\frac{1}{2}\right) - 3\left(-\frac{1}{2}\right)^2\right)}$$

$$= -\left(\frac{4\left(\frac{1}{2}\right)}{2} - 3\frac{1}{2}\right)$$

$$= \frac{2}{2\left(\frac{1}{2} + \frac{1}{2} - 3\frac{1}{2}\right)}$$

$$= \frac{2}{2\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} - 3\frac{1}{2}\right)}$$

$$= \frac{2}{2\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} +$$

Suppose du (m) co has two equal roots (song m.) then of (m) =0 If m, also satisfies on (m,) =0, then c cannot be determined by 3 In this cas the bellowing term. to determine c, 02 pn (m) + c Pn-, (m) + Pn-2 (m) =0 Prolem - 21 Find the asymptotes of x3+2x9 - 4xy2 -8y3 -4x +8 y=01 Soln: Given Curve 23 + 2 x2y -4 xy2 -8y3 -4x +8y-1 50 The hightenest degree terms are x3+ 2x2y + - + ocy2 -8xy3 By rule put rest and yem, echare \$3(m)=11+ 2m - 4m2 - 8m3 = (1+ 2m) -4 m2 (1+2m) = (1+2m) (1-4m2)

$$= \frac{(1+2m)(1+2m)(1-2m)}{(1-2m)}$$

$$= \frac{(1+2m)^{3}(1-2m)}{(1-2m)}$$

$$= \frac{1}{2}(1+2m)^{2}(1-2m)$$

$$= \frac{1}{2}(1+2m)(2)(1-2m) + \frac{1}{2}(1+2m)^{2}(1+2m)^{2}$$

$$= \frac{1}{2}(1+2m)(1-2m) - \frac{1}{2}(1+2m)^{2}$$

$$= \frac{1}{2}(1+2m)\left[\frac{1}{2}(1-2m) - \frac{1}{2}(1+2m)\right]$$
Since there are as second degree there  $\frac{1}{2}(1+2m)(1-6m)$ 

$$= \frac{1}{2}(1+2m)(1-6m)$$

For 
$$m_1 = \frac{1}{2}$$
 $c_1 = \frac{1}{2}$ 
 $c_2 = \frac{1}{2}$ 
 $c_3 = \frac{1}{2}$ 
 $c_4 = \frac{1}{2}$ 
 $c_5 = \frac{1}{2}$ 
 $c_6 = \frac{1}{2}$ 

For 
$$m_1$$
,  $m_2 = \frac{1}{2}$ 

(a) =3 (2(1+6(3))+1-2(3) =0

$$c^2(1-3)+2=0$$

$$c^2+2=0$$

$$c^2=1$$

$$c = \pm 1$$

$$c = \pm 1$$
For  $m_3 = \frac{1}{2}$ 
(a) =0

$$c^2(1+6(2)+1-2(2)=0$$

$$c^2(1+3)+1-1 =0$$

$$c^2=0$$

$$c$$

The asymptotes are 5= -12 De +1 1 = - + 2 - - (0+ y+xxx) y = 1/2 x Find the asymptotes of y2 (x2-y2-/2xy3 + 2p3x = 0 Gin Cowe y2(x2/ y2) - 2xy3/+ 203 x =0 2 2 2 - 3 - 2 2 3 + 2 a 3 x = 0 Another Method for finding asymptotes: Suppose the egn of the covere of 1th degree put is the form (ax+by+c)Pn+ + Fn-1=0, where Pn and Fn denote the polynomials in a only of (n-1) the degree Also az + bytc =0 & called the asymptotic direction and also the

asymptote is paralled to ax+by+c=0 . The asymptotes for gn come is  $(a \times tby + c) + lin$   $y = a - a \times - a$   $(a \times tby + c) + lin$   $y = a - a \times - a$   $(a \times tby + c) + lin$   $(a \times$ Yon - 22 stalones st bast Find the asymptotes of x3 + y3 = 39 24 Soln: Gin Curve: x3+y3 = 39 xy =)  $(x+3)(x^2-xy+y^2) - 3axy = 0$ The asymtotes direction is ntg =0 The dyntotes is  $(x+y) + \lim_{y=-\infty} \frac{-3axy}{x^2 - xy + y^2} = 0$  $=) \times 49 + \lim_{x \to \infty} \frac{3\pi x^2}{3x^3} = 0$  $x+y+x\to ab$ orda's oll

=> x +y+a =0 is the required asympto tes. Pbm - 23. Find the nectilinour asymptote - of 2x4-5x2g2+3y4+4x3-6y3+  $x^{2} + y^{2} - 2x^{3} + 1 = 0$ かくしょうりょうか Gin Ceowe 2x4-5x2y2 +3y4 +4x3-6y3+x2+y2-2xy+100  $\Rightarrow 2x^{4} - 2x^{2}y^{2} - 3x^{2}y^{2} + 3y^{4} + 4x^{3} - 6y^{3} + x^{2} + y^{2}$  $= 2x^{2}(x^{2} - y^{2}) - 3y^{2}(x^{2} - y^{2}) + 4x^{3} = 6y^{3}$   $+ x^{2} + y^{2} - 2xy + 1 = 0$ =>  $(2x^2-3y^2)(x^2-y^2) + 4x^3 - 6y^3 + x^2 + y^2 - 2xy + 1 = 0$ => ( (x x + 53 y) ( (x x - 53 y) (x+y) (x-y) +  $4x^3-6y^3+x^2+y^2-2ny+1=0$ The asymptotes direction are, (Gx+Gy),(Gx-Gy),(x+y),(x+y)

The first asymptotes is

$$(8x+(8y) + \frac{1}{y} = \frac{1}{13} \times 3 + \frac{1}{12} \times \frac{3}{2} - 6y^{3} + x^{2} + y^{2} - 2xy + y) = 0$$

$$(2x+(8y) + \frac{1}{y} = \frac{1}{13} \times 3 + \frac{1}{2} \times \frac{3}{2} + x^{2} + y^{2} - 2xy + y) = 0$$

$$(2x+(8y) + \frac{1}{2} \times \frac{1}{2} \times \frac{3}{2} \times \frac{3}$$

The second dynaplates is

$$(3x - (3y) + \lim_{3 \to \infty} (3x - (3y)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3y)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3y)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3y)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + \lim_{3 \to \infty} (3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + 3x - (3x)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2)) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3y) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3x) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3x) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3x) + (3x - y^2)(x^2 - y^2) = 0$$

$$\Rightarrow (3x - (3x) + ($$

The Third asymptotes is

$$(x+y) + hiv$$
 $y = x \Rightarrow e = (hx^3 - 6y^2 + x^2 + y^2 - 2xy + y)$ 
 $(x+y) + hiv$ 
 $y \Rightarrow e = (x^3 - 6y^3 + (x^3)^3 + 6y^3 + (x^3)^2 + y^2 - 2(x^3)(y) + y)$ 
 $(x+y) + hiv$ 
 $(x+y)$ 

The Fourth asymptotes is

$$(z-y) + lin$$
 $y = x > \infty$ 
 $(x-y) = lin$ 
 $(x-y) = li$ 

## Remark: 1) Sugare the come & of the form (axtby+c) Pn-2 + Fn-a so then the asymptotes we $(a \times tby+c)^2 = \lim_{y = -a} x \rightarrow \infty \left(\frac{t_{n-2}}{p_{n-2}}\right)$ a) If the come can be written as (ax+by) Pn-2 + (ax+by) Fn-2 + fn-2 =0 then the asymptotes are gn by $(ax + by)^2 + (ax + by)$ $\int_{-a}^{b} \frac{f^{n-2}}{f^{n-2}} dx + \frac{f^{n-2}}{f^{n-2}}$ Then the parallel asymptotes are a ax+by = x and ax+by = B, where x and B be the nexts of the egn, $t^{2}+t \lim_{y=\frac{a}{b}x\rightarrow\infty}\left(\frac{t_{n-2}}{P_{n-2}}\right)+\lim_{y=\frac{a}{b}x}\left(\frac{t_{n-2}}{P_{n-2}}\right)=0$ Pom - 24 Find the asymptotes of

(x+y)2 (x+29+2) =x+9y-2

Go come

$$(x+9)^{2} (x+3y+3) = (x+9y-3)$$

The asymptotes paralled to  $x+y=0.20$ 

$$(x+9)^{2} = \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$= (x+9)^{2} = \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$= (x+9)^{2} = \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12} \frac{1}{12}$$

$$= (x+9)^{2} = \frac{1}{12} \frac{1}{$$

$$\Rightarrow x + \delta y + \delta = \lim_{x = -\partial y \neq 0} \left( \frac{x + 9y - 2}{(x + y)^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{-\partial y + 9y - 2}{(-\partial y + y)^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{y^2} \right)$$

$$x + 2y + 0 \Rightarrow \lim_{y \to 0} \left( \frac{7y - 2y}{$$

Phon = 35

Find the asymptotics of

$$(x-y)^{2}$$
  $(x-3y)$   $(x-3y) = 2a(x^{3}-y^{3}) = 2a^{2}(x+y)$ 
 $(x-9y) = 0$ 

Soln:

Gin (wine

 $(x-3)^{2}(x-3y)(x-3y) = 2a(x^{3}-y^{3}) = 3a^{2}(x+y)$ 
 $(x-3y)^{2}(x-3y)(x-3y) = 2a(x-3)(x^{2}+xy+y^{2})$ 
 $-3a^{2}(x+y)(x-2y) = 0$ 

The two asymptotic parallel to (x33)

 $x-y=0$ : is  $ga = by$ 
 $(x-3)^{2} + (x-y) = 0$ 
 $(x-3)^{2} + (x-y) = 0$ 
 $(x-3)^{2} + (x-y) = 0$ 
 $(x-3)^{2} + (x-3y) = 0$ 
 $(x-3y)^{2} + (x-3y) = 0$ 

$$(x-3y) - 20x y - 20x (2y-3)^{2} (2y-3y)$$

$$- 20x^{2} (xy-3) = 0$$

$$(x-2y) - 20x y - 20x (2y-3)^{2} (2y-3y) = 0$$

$$(x-2y) - 20x y - 20x (2y-3) = 0$$

$$(x-2y) - 20x (xy-3) = 0$$

$$(x-2y) - 20x (xy-3) = 0$$

$$(x-2y) - 20x (xy-3) = 0$$

$$(x-2y) - 20x (-7) = 0$$

$$(x-2y) - 20x (-7) = 0$$

$$(x-3y) + 10x = 0$$

$$(x-3y) + 10x (x-3)^{2} (x-2y) + 10x (x-2y) + 10x$$

$$(x-3y) - 3a \frac{kn}{y-2a} \left(\frac{3y+9}{3y-2y}\right)$$

$$- 3a^{2} \frac{kn}{y-2a} \left(\frac{3y+9}{2y-2y}\right) = 0$$

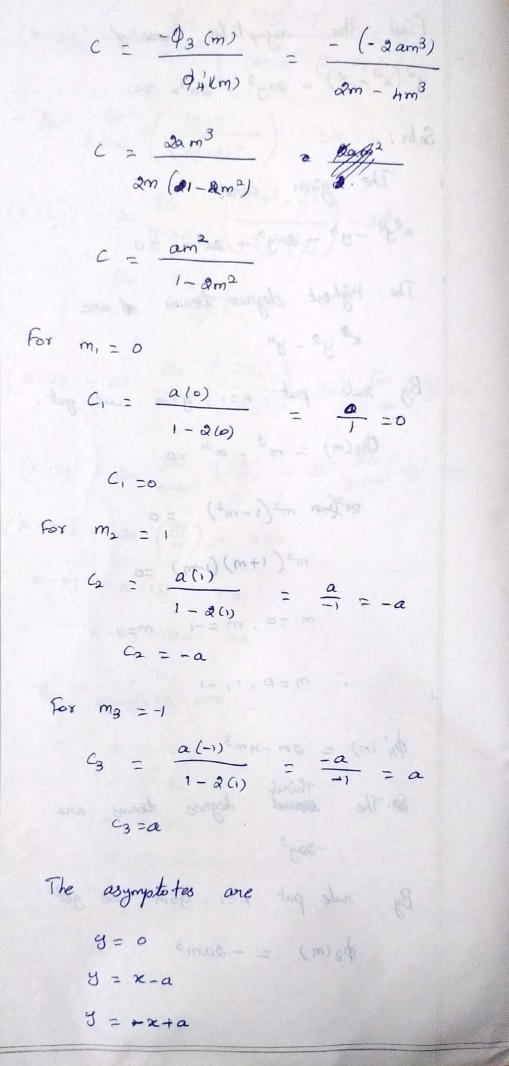
$$(x-3y) - 3a \frac{kn}{y-2a} \left(\frac{2(y^{3})}{4y^{2}}\right) = 0$$

$$(x-3y) - 3a \frac{kn}{y-2a} \left(\frac{2(y^{3})}{4y^{3}}\right) - 3a^{2} \frac{kn}{y-2a} \left(\frac{1}{3}\right) = 0$$

$$(x-3y) - 3a \frac{kn}{y-2a} \left(\frac{36}{4}\right) - 3a^{2} \frac{kn}{y-2a} \left(\frac{1}{3}\right) = 0$$

$$(x-3y) - 3a \left(\frac{36}{4}\right) - 0 = 0$$

$$(x-3y) - 3a \left(\frac{36}{4}\right) - 0 = 0$$


$$x-3y-13a = 0$$
The asymptotes are
$$x-y-a = 0$$

$$x-3y-13a = 0$$

$$x-3y-13a = 0$$

Find the asymptotes are of  $y^{\alpha}(x^{\alpha}-y^{\alpha}) - 2ay^{3} + 2a^{3}x = 0$ . Soln: The given curve x 8y 2 - y 4 - 2ay 3 + 2a 3 x = 0 The Highest degree terms of are x<sup>®</sup> y<sup>∞</sup> - y<sup>4</sup> By rule put x=1, y=m we get, Фу (m) = m2 - m4 =0  $m^2(n-m^2) = 0$ m2 (1+m) (1-m) =0 m =0, m=-1, m=, m=0,1,-1 \$4' (m) = 2m -4m3 Es. The spread degree terms are -2ay3 By rule put x=1, y=m we get  $\phi_3(m) = -aam^3$ M = M = M

J = + x + a



Asymptotes by Inspection. If the egr of the curve can be put is the form fax fax 20 where In can be break up into Lensar factors, then Fn=0 reports ant the required asymptotes. Pbm- 26. Food the asymptotes of (x+y)(x-3)(x-2y-4)=(6x+7y-6)Soln: Gn come: (x+y)(x-y) (x-2y-4) - (3x+7y-6) =0 .. The gra come to of the form F3-F1=0 and F3 break up into linear factors. The nequired asymptotes are (x+4) (x-4) (x-29-4) 20 =) x+9 =0, x-9=0, x-29 = 4=0 [ yag de dy =

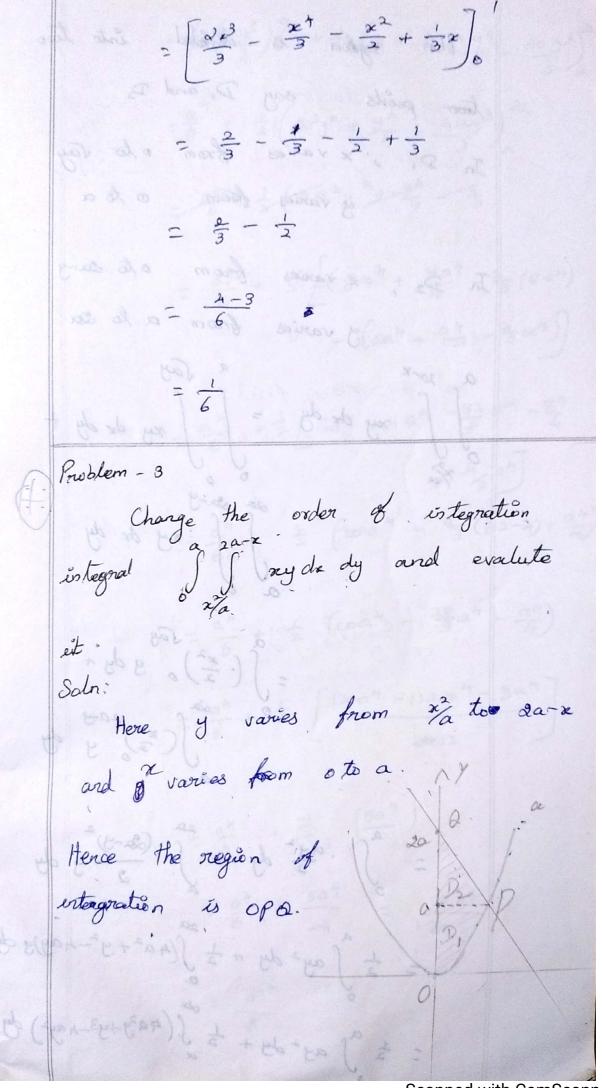
| (2) | Removed:                                                                                      |    |
|-----|-----------------------------------------------------------------------------------------------|----|
| low | Remark:  1. Any asymptotes of an algobric                                                     |    |
|     | curve of degree n Put th curve                                                                |    |
|     | is n-2 pts                                                                                    |    |
| 3   | 2) If a come of degree n has                                                                  |    |
|     | n asymptotes then all intersect the                                                           |    |
|     | coure en n(n-2) pts.                                                                          |    |
|     | (x+3) (x-080-3) (x-080+3)                                                                     |    |
|     | Unit - N                                                                                      |    |
|     | Evaluation of Double intergrals                                                               |    |
| 05  | Unit - IV  Evaluation of Double intergrals $ \iint f(x,y) dx dy = \iint f(x,y) dy dx $ a quex |    |
|     | Problem -, Evalute Is my dx dy taken over the                                                 |    |
|     | Evalute Is my one dy taken over the                                                           |    |
|     | positive quadrant of the circle x2+y2=a2                                                      | 8, |
|     | Soln: 0= (H 84+ x) (8-4) (8+4)                                                                |    |
|     | Hore x various from o to a                                                                    |    |
|     | g various from o to Ja2-x2                                                                    |    |
|     | If my dx dy = $\int \int ny dy dx$ $\int \int ny dy dx$ $\int \int \int ny dy dx$             |    |

$$= \int_{a}^{a} \times \left(\frac{x^{2} - x^{3}}{a}\right) dx$$

$$= \int_{a}^{1} \int_{a}^{2} \times (a^{2} - x^{3}) dx$$

$$= \int_{a}^{1} \int_{a}^{2} \left(\frac{x^{2}}{a^{2}}\right)^{\alpha} - \left(\frac{x^{3}}{a}\right)^{\alpha} dx$$

$$= \int_{a}^{1} \left(\frac{a^{2}}{a^{2}} - \frac{a^{3}}{a^{3}}\right) dx$$


$$= \int_{a}^{1} \left(\frac{a^{2}}{a^{2}} - \frac{a^{3}}{a^{3}}\right) dx$$

$$= \int_{a}^{1} \left(\frac{a^{2} - a^{3}}{a^{3}}\right) dx$$

$$= \int_{a}^{1} \left(\frac{a^{3} - a^{3}}{a^{3}}\right) dx$$

$$= \int_{a}^{1} \left(\frac{a^$$

$$\int (x^{2}y^{3}) dx dy$$
=  $\int (x^{2}+y^{3}) dy dx$ 
=  $\int (x^{2}dy + y^{2}dy) dx$ 
=  $\int (x^{2}dy + y^{2}d$ 



This region a devotal into two two points say D, and B In Di x varies from o to vay y varies from a to a x varies from o to sury y varies from a lo sa  $= \int \left(-\frac{x^2}{2}\right) \circ g \, dy +$ (x2) 200 dy = 3 . ay + 3 (20-4)2 dy = \frac{1}{2}\int ay^2 dy + \frac{1}{2}\int(4a^2 + y^2 - 4ay)y dy = 1 ay ay + 1 J. (423/443-4ay2) dy

$$\frac{2}{1} \cdot \left(\frac{ay^{3}}{3}\right)^{\frac{9}{0}} + \frac{1}{2} \left(\frac{4a^{2}y^{2}}{4} + \frac{y^{4}}{4} - \frac{4ay^{3}}{3}\right)^{\frac{1}{a}}$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{3a^{2}y^{2}}{4} + \frac{y^{4}}{4} - \frac{4ay^{3}}{3}\right)^{\frac{1}{a}}$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{8a^{4}}{4} + \frac{4a^{4}}{4} - \frac{4a^{4}}{3}\right)^{\frac{1}{a}}$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{8a^{4}}{4} + \frac{4a^{4}}{4} - \frac{4a^{4}}{3}\right)^{\frac{1}{a}}$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} + \frac{4a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} + \frac{4a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{28a^{4}}{3} - \frac{a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{3a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{6a^{4}}{4} - \frac{19a^{4}}{4} - \frac{19a^{4}}{4}\right)$$

$$= \frac{a^{4}}{6} + \frac{1}{2} \left(\frac{a^{4}}{4} - \frac{19a^{4}}{4}$$

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Problem - 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | By changing the order of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Integration evaluate SS. e-3 dx dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Salution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The state of the s | In the negion D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | and for each fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Z - ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | y, x vances brom a toy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (F+1)+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\iint_{x} \frac{e^{-3}}{g} dx dy = \iint_{y} \frac{e^{-3}}{g} dx dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $=\int \frac{e^{-3}}{9} (x)^{3} dy = \int \frac{e^{-3}}{9} (y) dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| *AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - to ect - to oct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= \int_{0}^{\infty} e^{-s} dy = \left(\frac{\varepsilon}{1}\right)_{0}^{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Coop ot - So T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [e - e) [o-i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 to 6 - 100 to 600 t |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| * * * The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | graves from o to so  and for each fined  3, x varies from o toy $\int_{x}^{2} \frac{e^{-3}}{g} dx dy = \int_{y}^{2} \frac{e^{-3}}{g} dx dy$ $= \int_{y}^{2} \frac{e^{-3}}{g} (x)^{3} dy = \int_{y}^{2} \frac{e^{-3}}{g} (y) dy$ $= \int_{y}^{2} e^{-3} dy = (e^{-3})^{2}$ $= -[e^{-2} - e^{-3}] = -[e^{-3}]^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Double entegral en Palan co-ordenates  $\iint_{R} f(x, \theta) \times dx d\theta = \iint_{R} r f(r, \theta) dr d\theta$  REvaluate . Is I sa-radrdo over the uppor half of the wide 1= a couse Solution:  $= \int_{0}^{\pi/2} \int_{0}^{\pi} \int_{0}^{\pi}$ = = = 5 J St dt do. = = = \frac{1}{2}\left(\frac{13\left}{3\left(2)}\right)\do = = = \frac{1}{2}\times \frac{3}{3}\left(\frac{13\left}{3\left(2)}\right)\do =  $-\frac{1}{3}$   $\left( (a^2 - r^2)^{3/2} \right)$  de do 

$$= \frac{1}{3} \int \left(a^{2} - a^{2} \cos^{2} \theta\right)^{\frac{3}{2}} - \left(a^{2}\right)^{\frac{3}{2}}\right) d\theta$$

$$= \frac{1}{3} \int \left(a^{3} (1 - \omega^{3} \theta)^{\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \int \left(a^{3} (5 \cos^{2} \theta)^{\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \int \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \int \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

$$= \frac{1}{3} \left(a^{3} (5 \cos^{2} \theta)^{-\frac{3}{2}} - a^{3}\right) d\theta$$

over the annular region between the condes x2+y2 = a2 and x2+y2 = b2 (b>a) Soln: Put x = rcoso and y= rsino and ITI = Y By Exansforming Ente polar co-ordinates, the two circle becomes rea and reb.  $\int \frac{x^2 y^2}{x^2 + y^2} dx dy$ = II r2cos20 + x2sin20 rdr do  $= \int \int \frac{\gamma^5 \cos^2\theta \sin^2\theta}{\gamma^2} d\gamma d\theta$ = 15 x 3 cos 20 sin 20 dr do = \int \int \gamma \cos^2 \text{0 sin}^2 \text{0 dr do}  $= \int \left(\frac{7^{2}}{4}\right)^{b}_{a} \cos^{2}\theta \sin^{2}\theta d\theta$ 64-00 Sas2051020 do

$$= \frac{b^{4} - a^{4}}{4} \int_{0}^{2\pi} a x^{2} \theta \left(1 - a x^{2} \theta\right) d\theta$$

$$= \frac{b^{4} - a^{4}}{4} \int_{0}^{2\pi} (a x^{2} \theta - a x^{4} \theta) d\theta$$

$$= \frac{b^{4} - a^{4}}{4} \left[\int_{0}^{2\pi} a x^{2} \theta d\theta - \int_{0}^{2\pi} a x^{4} \theta d\theta\right]$$

$$= \frac{b^{4} - a^{4}}{4} \left[\int_{0}^{2\pi} a x^{2} \theta d\theta - \int_{0}^{2\pi} a x^{4} \theta d\theta\right]$$

$$= \frac{b^{4} - a^{4}}{4} \left[\int_{0}^{2\pi} a x^{2} d\theta - \int_{0}^{2\pi} a x^{4} d\theta\right]$$

$$= \frac{b^{4} - a^{4}}{4} \left[\int_{0}^{2\pi} a x^{2} d\theta - \int_{0}^{2\pi} a x^{4} d\theta\right]$$

$$= \left(\frac{b^{4} - a^{4}}{4}\right) \left(\frac{\pi}{4} - \frac{2\pi}{4}\right)$$

$$= \left(\frac{b^{4} - a^{4}}{4}\right) \left(\frac{\pi}{4} - \frac{2\pi}{4}\right)$$

$$= \left(\frac{b^{4} - a^{4}}{16}\right) \left(\frac{\pi}{4} - \frac{2\pi}{4}\right)$$

$$= \left(\frac{b^{4} - a^{4}}{16}\right) \left(\frac{\pi}{4}\right)$$

Plan- 7 By Changing into Polar co-ordinate evalute the integral of (x2+32) dedy Saln: The negion of integral in the Some circle x2+y2 = sax above the x axis. Pat == rcoso 9= rsin 0 |5)=1  $x^2 + 9^2 = 2ax$ 82050 +825120 = 2080000000000 r2, = , dar coso r = 20 coso I varies from o to sacoso 30 varies from o to 0% (x2+y2) dre by = \int \( \size \frac{2}{8} + \frac{2}{5} \size \frac{2}{8} + \frac{2}{5} \size \frac{2}{6} + \frac{2}{5} \size \frac{2}{6} \size \frac{2}{6} \size \frac{2}{6} + \frac{2}{5} \size \frac{2}{6} \size \frac{2}{6} \size \frac{2}{6} + \frac{2}{5} \size \frac{2}{6} \size \frac{2}{6} + \frac{2}{5} \size \frac{2}{6} \size \frac{2}{6} + \frac{2}{5} \size \frac{2}{6} \size \fr De Jack % paceso from do

Scanned with CamScanner

$$= \int_{a}^{2\pi} \frac{(2\pi)^{2}}{(4\pi)^{2}} d\theta$$

$$= \int_{a}^{2\pi} \frac{(3\pi)^{2}}{(4\pi)^{2}} d\theta$$

$$= \int_{a}^{2\pi} \frac{(3\pi)^{2}}{(4\pi)^{2}} d\theta$$

$$= \int_{a}^{2\pi} \frac{(3\pi)^{2}}{(4\pi)^{2}} d\theta$$

$$= \int_{a}^{2\pi} \frac{(3\pi)^{2}}{(4\pi)^{2}} d\theta$$

$$= \int_{a}^{2\pi} \left[ \int_{a}^{2\pi} x^{2} dx + y^{2} \int_{a}^{2\pi} dx \right] dy$$

$$= \int_{a}^{2\pi} \left[ \left( \frac{x^{3}}{3} \right)^{\frac{1}{2}} + y^{2} \left( x \right)^{\frac{1}{2}} \right] dy$$

$$= \int_{a}^{2\pi} \left[ \left( \frac{x^{3}}{3} \right)^{\frac{1}{2}} + y^{2} \left( x \right)^{\frac{1}{2}} \right] dy$$

$$= \int_{3}^{2} \left(\frac{b^{3}}{3} + 5^{2}b\right) dy$$

$$= \int_{3}^{2} \left(\frac{b^{3}}{3} + 5^{2}b\right) dy$$

$$= \frac{b^{3}}{3} \left(\frac{ay}{3}\right)^{a}_{0} + b \left(\frac{y^{3}}{3}\right)^{a}_{0}$$

$$= \frac{b^{3} \alpha}{3} + \frac{b \alpha^{3}}{3}$$

$$= \frac{b^{3} \alpha}{3} + \frac{b \alpha^{3}}{3}$$

$$= \frac{b^{3} \alpha}{3} + \frac{a b^{3} + a^{3}b}{3}$$

$$\begin{array}{lll}
\partial_{m} & \partial_{x} & \partial_{y} & \partial_{y$$

$$= \int_{0}^{3} \left[ \chi^{2} \left( \frac{1}{2} \chi + - \frac{1}{2} \right) + \chi \left( \frac{9}{3} - \frac{1}{3} \right) \right] d\chi$$

$$= \int_{0}^{3} \left[ \chi^{2} \left( \frac{3}{2} \chi \right) + \chi \left( \frac{1}{2} \chi \right) \right] d\chi$$

$$= \frac{3}{2} \left( \frac{23}{3} \right)_{0}^{3} + \left( \frac{7}{2} \right) \left( \frac{\chi^{2}}{2} \right)_{0}^{3}$$

$$= \frac{\chi}{2} \int_{0}^{3} + \frac{\chi}{3} \left( \frac{9}{2} \right)^{3}$$

$$= \frac{27}{2} + \frac{91}{2} = \frac{48}{2}$$

$$= 24$$

$$\begin{cases} \int_{-1}^{\infty} x \, y^{2} \, dy \, dx \\ = \int_{-1}^{\infty} \left[ \frac{y^{3}}{3} \right]^{x} \, dx$$

$$= \int_{-1$$

$$\begin{cases} \int_{a}^{b} \int_{a}^{b} xy(x-y) \, dy \, dx \\ = \int_{a}^{b} \int_{a}^{b} xy(x-y) \, dy \, dx \\ = \int_{a}^{b} \int_{a}^{b} \left[x^{2}y^{2} + xy^{2}\right] \, dy \, dx \\ = \int_{a}^{b} \left[x^{2}\left(\frac{b^{2}}{2}\right) - x\left(\frac{b^{3}}{3}\right)\right] \, dx \\ = \int_{a}^{b} \left(\frac{z^{3}}{3}\right)^{a} - \frac{b^{3}}{3}\left(\frac{x^{2}}{2}\right)^{a} \\ = \frac{b^{2}}{2}\left(\frac{a^{3}}{3}\right) - \frac{b^{3}}{3}\left(\frac{a^{2}}{2}\right) \\ = \frac{a^{3}b^{2}}{b} - \frac{a^{2}b^{3}}{b} \end{aligned}$$

$$\int_{0}^{10} \int_{0}^{10} \left(x^{2}+y^{2}\right) dy dx$$

$$= \int_{0}^{10} \left[x^{2} + y^{2}\right] dy dx$$

$$= \int_{0}^{10} \left[x^{2} + y^{2}\right] dy dx$$

$$= \int_{0}^{10} \left[x^{2} + y^{2}\right] dy dx$$

$$= \left(\frac{x^{4}}{4}\right)_{0}^{10} + \frac{1}{3} \left(\frac{x^{4}}{4}\right)_{0}^{10}$$

$$= \frac{a^{3}}{4} + \frac{1}{3} \frac{a^{4}}{4}$$

$$= \frac{a^{4}}{12} + \frac{a^{4}}{12}$$

$$= \frac{a^{3}}{12} + \frac{a^{4}}{12} = \frac{a^{4}}{3}$$

$$\int_{0}^{10} \left(3x + 3y\right) dy dx = \int_{0}^{10} \left(3x + 3y\right) dy dx$$

$$\int_{0}^{10} \left(3x + 3y\right) dy dx = \int_{0}^{10} \left(3x + 3y\right) dy dx$$

$$\int_{0}^{10} \left(3x + 3y\right) dy dx = \int_{0}^{10} \left(3x + 3y\right) dy dx$$

$$\int_{0}^{2\pi} (dx-x^{2}) + \frac{3}{3}(4x^{2}-x^{4}) dx$$

$$= \int_{0}^{2\pi} [Ax^{2}-3x^{3}+6x^{2}-\frac{3}{2}x^{4}] dx$$

$$= \int_{0}^{2\pi} [Ax^{2}-3x^{2}+6x^{2}-\frac{3}{2}x^{4}] dx$$

$$= \int_{0}^{2\pi} [Ax^{2}-3x^{2}+6x^{2}-\frac{3}{2}x^{4}] dx$$

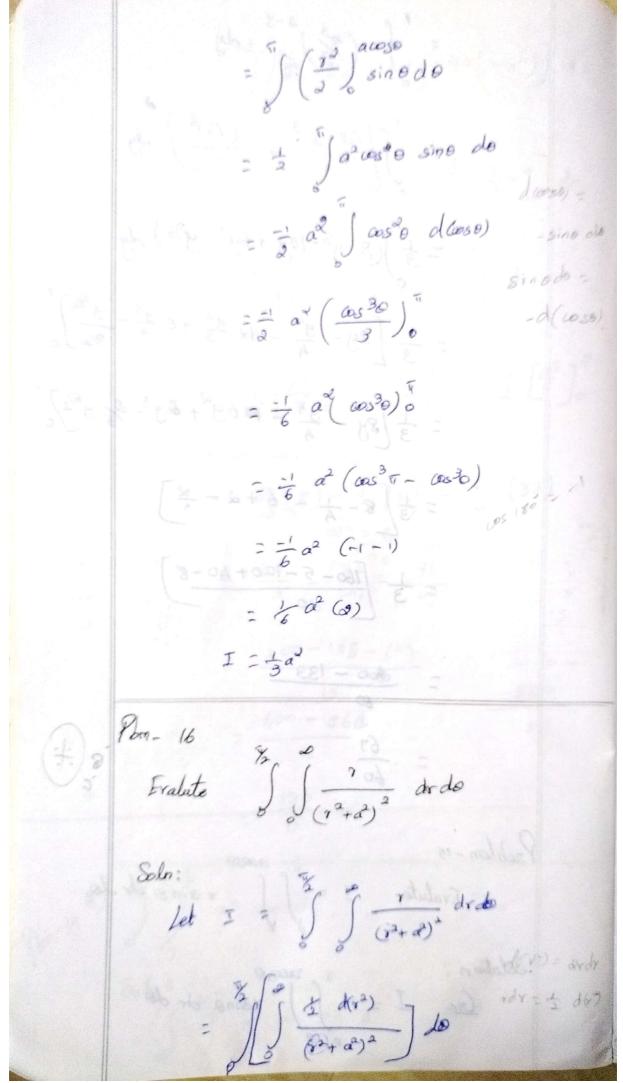
$$= \int_{0}^{2\pi} [Ax^{2}-3x^{2}+6x^{2}-\frac{3}{2}x^{4}] dx$$

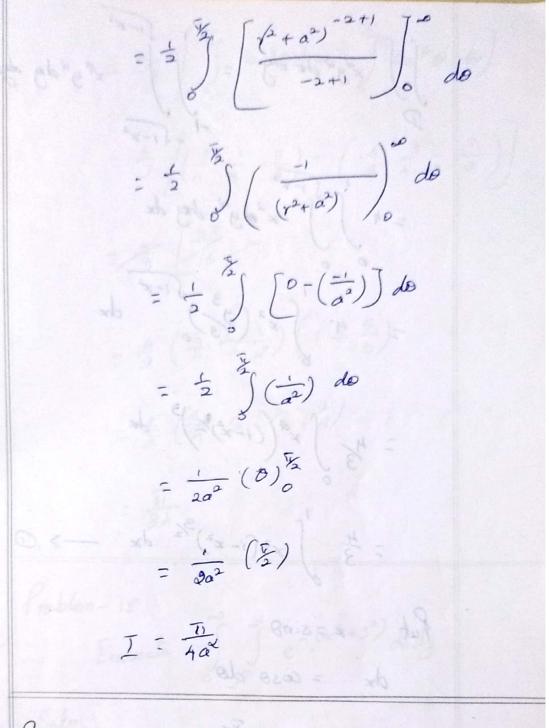
$$= \int_{0}^{2\pi} [Ax^{2}-3x^{2}+6x^{2}-3x^{2}] dx$$

$$= \int_{0}^{2\pi} [Ax^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}] dx$$

$$= \int_{0}^{2\pi} [Ax^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2}-3x^{2}+6x^{2$$

$$= \int_{3}^{2-3} \left(\frac{3}{3}\right)^{2-3} dy$$


$$= \int_{3}^{2-3} \left(\frac{3}{3}\right)^{2-3} dy$$


$$= \int_{3}^{2-3} \left(\frac{3}{3}\right)^{2-3} dy$$

$$= \int_{3}^{2-3} \left(\frac{3}{3}\right)^{2-3} dy + 63^{2} - \frac{3}{3}^{2-3} dy$$

$$= \int_{3}^{2-3} \left(\frac{3}{3}\right)^{2-3} + 63^{2} - \frac{3}{3}^{2-3} + 63^{2} - \frac{3}{3}^{2-3} dy$$

$$= \int_{3}^{2-3} \left(\frac{3}{3}\right)^{2-3} + \frac{3}{3} + \frac{3}{3}$$





For fixed x, y varies from -1 to  $\sqrt{1-x^2}$ 

I xy de dy = I = xy dy dy dy = 4 ) Si-x2 dy dy dx  $= 4^{1} \int_{\mathbb{R}^{2}} \left( \frac{3}{3} \right)_{0}^{1-2} dx$ = 43 \ x2 (1-x2) 2)3 dx = \frac{4}{3}\int \pi^2 \left(1-\pi^2\right)^{\frac{3}{2}} dx \rightarrow 0 Put x = sino dx = coso do メニュラロニを z = 0 => 0 = 0 0 = -> 1/3 3 Sin20 (cos20) tossado = 4 3 singe costo do = 43 \ (-costo), costo do

$$= \frac{1}{3} \left[ \frac{8}{3} \cos^{3}\theta d - \frac{8}{3} \cos^{6}\theta d \theta \right]$$

$$= \frac{1}{3} \left[ \frac{3}{4} - \frac{7}{3} \right] - \left( \frac{5}{6} - \frac{3}{4} - \frac{7}{3} \right) \right]$$

$$= \frac{1}{3} \left[ \frac{3}{4} - \frac{7}{3} - \frac{7}{3} \right]$$

$$= \frac{1}{3} \left[ \frac{3}{4} - \frac{7}{3} - \frac{7}{3} - \frac{7}{3} \right]$$

$$= \frac{1}{3} \left[ \frac{3}{4} - \frac{7}{3} - \frac{7}{3}$$

Evaluate of e - (x2+32) dedy

Solo:

Put x = rcoso and.

3 = rsino

: (5) = r

The rugion of integration is the entire first quadrant

: v varies from 0 to as go of uaries from 0 to 552

 $\iint e^{-(x^2+y^2)} dxdy = \iint e^{-y^2} dydy$  $= \int_{0}^{\pi} (0)^{\frac{\pi}{2}} e^{-r} dr$   $= \int_{0}^{\pi} (0)^{\frac{\pi}{2}} e^{-r} dr$   $= \int_{0}^{\pi} (0)^{\frac{\pi}{2}} e^{-r} dr$   $= \int_{0}^{\pi} (0)^{\frac{\pi}{2}} e^{-r} dr$  $=\frac{\pi}{2}\int e^{-\gamma^2} r dr$ d(-12)=  $=\frac{1}{2}\int_{-2}^{\infty}\left(\frac{1}{2}e^{-\gamma^{2}}d\left(-\gamma^{2}\right)\right)$ rdr=-1dr  $=\frac{-\pi}{4}\int_{-\pi}^{\pi}e^{-r^2}d(-r^2)$  $= \frac{-7}{4} \left( e^{-r^2} \right)^{\frac{1}{2}} = \frac{-7}{4} \left( 0 - 1 \right)$ - 4 Pom - 19 Evalute the integral Sr3sin2 dr do ever the region r=acoso Soln:  $\iint r^3 \sin^2 dr \, d\theta = \iint r^3 \sin^2 \theta \, dr \, d\theta$  $= \int_{0}^{\pi} \left(\frac{\pi^{\frac{1}{2}}}{h}\right)_{0}^{a\cos\theta} \sin^{2}\theta \ d\theta$ vois from a to to

$$=\frac{1}{4}\int_{0}^{4} a^{4}\cos^{4}\theta \sin^{2}\theta d\theta$$

$$=\frac{1}{4}\int_{0}^{4} a^{3}\cos^{4}\theta \left(1-\cos^{4}\theta\right) d\theta$$

$$=\frac{1}{4}\int_{0}^{4} a^{3}\sin^{4}\theta d\theta - \int_{0}^{4} \cos^{4}\theta d\theta$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right)$$

$$=\frac{1}{4}\int_{0}^{4} \left(\frac{3}{4}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\right) - \left(\frac{5}{4}\frac{3}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1$$

(x) 800 - do Evaluate III x g z dx dy dz taleous the passitive octant of the Sphere x "+y + z = a2 Soln: Here z varies from o to Ja2-x2-y2 y varies from o to Ja2-2 x varies from oto a xyz draydz a (a2-x2 (a2-x2-y2 = | xyz dz dg dx  $= \int_{0}^{\infty} \int_{0}^{2x^{2}} \frac{z^{2}}{2} \sqrt{a^{2}-x^{2}-y^{2}} dy dx$  $=\frac{1}{2}\int_{0}^{\infty} \int_{0}^{\infty} xy^{2} \left(a^{2}-x^{2}-y^{2}\right) dy dx$  $=\frac{1}{a}\int \left(a^2xy-x^3y-y^3x\right)dy dx$  $=\frac{1}{2}\int \left(\frac{a^{2}xy^{2}}{2}-\frac{x^{3}y^{2}}{2}-\frac{y^{4}x}{4}\right)^{0}dx$ 

$$= \frac{1}{2} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} y^{2}}{2} - \frac{y^{2}}{2} \right) \int_{0}^{a^{2} \times a^{2}} dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} y^{2}}{2} - \frac{y^{2}}{2} \right) \int_{0}^{a^{2} \times a^{2}} dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{2} - \frac{y^{2} \times y^{2}}{2} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{2} - \frac{y^{2} \times y^{2}}{2} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{2} + \frac{y^{2} \times y^{2}}{2} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}}{4} \right) dx$$

$$= \frac{1}{8} \int_{0}^{a} \left( \frac{x^{2} \times y^{2}}{4} - \frac{y^{2} \times y^{2}}{4} + \frac{y^{2} \times y^{2}$$

Pbm-21
Evaluate  $\iiint \frac{dx \, dy \, dz}{(x+g+z+1)^3}$ takes over the volume bold by the planes x=0, y=0, z=0, x+y+z=1 Here z varies from o to 1-x-y g varies from o to 1-x x vovies from o to 1  $\iint \frac{dx \, dy \, dz}{\left(x + y + p \ge + 1\right)^3} = \iint \frac{dz \, dy \, dx}{\left(x + y + p \ge + 1\right)^3}$  $= \int \left( \frac{(x+y+z+1)^{-3+1}}{-3+1} \right)^{1-x-3} dy dx$  $=\frac{1}{2}\int_{0}^{\infty}\int_{0}^{\infty}\left(\frac{1-x-y}{(x+y+z+i)^{2}}\right)dydx$  $= \frac{1}{2} \int \int (x+y+(-x-y)+1)^{2} - \frac{1}{(x+y+1)^{2}} dy dx$ = -1 ) [ - (x+y+)^2 ] dy dx

$$=\frac{1}{2}\int_{0}^{1}\left[\frac{1}{4}\left(\frac{1}{3}\right)^{-1}x^{2} + \left(\frac{1}{(x+y+1)}\right)^{-1}dx$$

$$=\frac{1}{2}\int_{0}^{1}\left[\frac{1}{4}\left(1-x\right) + \left(\frac{1}{(x+y+1)}\right)^{-1}dx$$

$$=\frac{1}{2}\int_{0}^{1}\left(\frac{1}{4}\left(1-x\right) + \left(\frac{1}{4}\left(1-x\right) + \left(\frac{1}{4$$

= \frac{1}{2} \log 2 - \frac{5}{16} Change of of variables. If u=f(x,9), v=p(x,9) be two continuous functions of the independent variables x and y such that  $\frac{\partial y}{\partial x}$ ,  $\frac{\partial u}{\partial y}$ ,  $\frac{\partial v}{\partial x}$ ,  $\frac{\partial v}{\partial y}$  are also continuous és e and g. then  $\left| \frac{\partial u}{\partial x} \right| \frac{\partial u}{\partial y} \right|$  is called the Jacobian of u and v, w. To to x and y and is denoted by  $J\left(\frac{u,v}{x,y}\right)$  600 d (u,v) d(x,3) the case of these variables u, v, w which are the fuctions of x, y, z. The Jacobian of u, v, w with respect to x,y, z is defined as

| du du du du dz                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\partial v}{\partial x} \frac{\partial v}{\partial y} \frac{\partial v}{\partial z}$ and $\frac{\partial v}{\partial z}$                                                                                                                                                                  |
| $\frac{\partial \omega}{\partial x} \frac{\partial \omega}{\partial y} \frac{\partial \omega}{\partial z}$                                                                                                                                                                                       |
| denoted by $5\left(\frac{u,v,w}{x,y,z}\right)$ for $\frac{\partial(u,v,w)}{\partial(x,y,z)}$                                                                                                                                                                                                     |
| Theorem -1                                                                                                                                                                                                                                                                                       |
| and x, y are them selves functions of                                                                                                                                                                                                                                                            |
| e b, then                                                                                                                                                                                                                                                                                        |
| $\frac{\partial (u,v)}{\partial (x,y)} \cdot \frac{\partial (x,y)}{\partial (\xi,y)} = \frac{\partial (u,v)}{\partial (\xi,y)}$                                                                                                                                                                  |
| Proof: $\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial y}$                                                                                                                           |
| Theref: $\frac{\partial(u,v)}{\partial(x,y)} = \frac{\partial(x,y)}{\partial(x,y)} = \frac{\partial u}{\partial x} \frac{\partial u}{\partial y} \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} \frac{\partial u}{\partial y}$                                                      |
| $= \left  \frac{\partial^2}{\partial x} \cdot \frac{\partial^2}{\partial x} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial y} + \frac{\partial^2}{\partial y} \cdot \frac{\partial^2}{\partial y} \right $ |
| $\frac{\partial v}{\partial z} \frac{\partial z}{\partial g} + \frac{\partial v}{\partial v} \frac{\partial y}{\partial g} = \frac{\partial v}{\partial x} \cdot \frac{\partial z}{\partial y} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial y}$                                    |
| 100 mg                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                  |

But since
$$u = f(x,y) \quad \text{g} \quad v = \phi(x,y)$$

$$u = f(x,y) \quad \text{g} \quad v = \phi(x,y)$$

$$u = f(x,y) \quad \text{g} \quad v = \phi(x,y)$$

$$\frac{\partial u}{\partial \varphi} = \frac{\partial u}{\partial x} \quad \frac{\partial x}{\partial \varphi} + \frac{\partial u}{\partial y} \quad \frac{\partial y}{\partial \varphi}$$

$$\frac{\partial u}{\partial \varphi} = \frac{\partial u}{\partial x} \quad \frac{\partial x}{\partial \varphi} + \frac{\partial u}{\partial y} \quad \frac{\partial y}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial x}{\partial \varphi} + \frac{\partial v}{\partial y} \quad \frac{\partial y}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial w}{\partial \varphi} + \frac{\partial v}{\partial y} \quad \frac{\partial y}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial w}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial w}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial \varphi}$$

$$\frac{\partial v}{\partial \varphi} = \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial z} = \frac{\partial v}{\partial z} \quad \frac{\partial v}{\partial z} \quad \frac{\partial v}{\partial z} \quad \frac{\partial v}{\partial z} = \frac{\partial v}{\partial z} \quad \frac{\partial$$

Proof:

In the previous nesult,

put 
$$\beta = a$$
 and  $\gamma = v$ 

we have

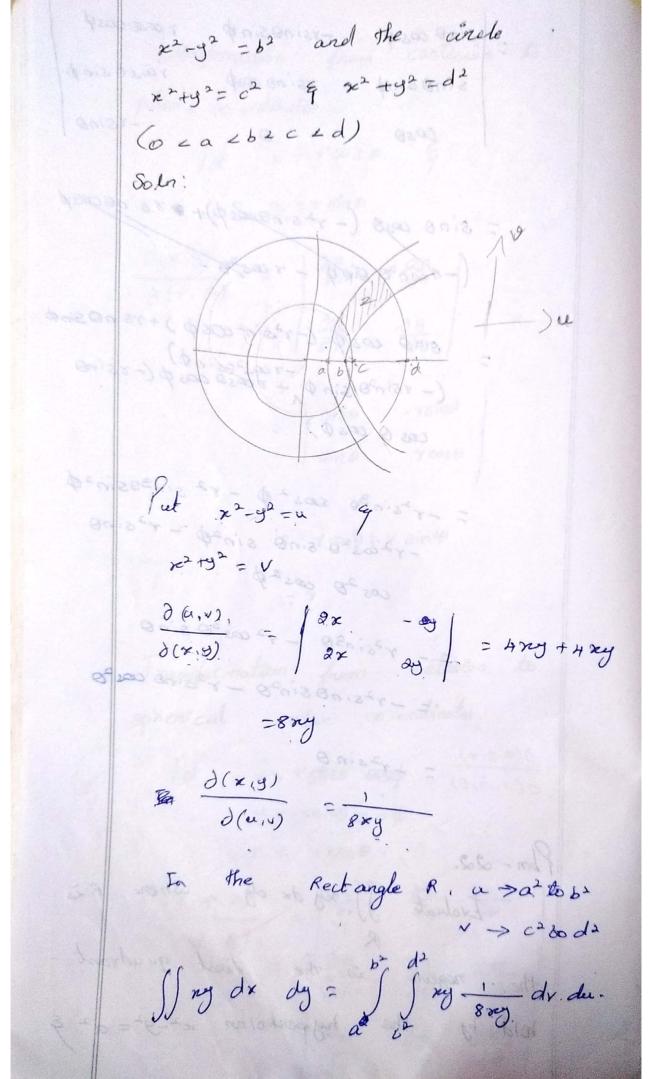
$$\frac{\partial(u \, v)}{\partial(x \, \cdot y)} \cdot \frac{\partial(x \, \cdot y)}{\partial(u \, v)} = \frac{\partial(u \, v)}{\partial(u \, v)}$$
But  $\frac{\partial(u \, v)}{\partial(u \, v)} = \begin{vmatrix} \partial u & \partial w \\ \partial u & \partial v \end{vmatrix}$ 

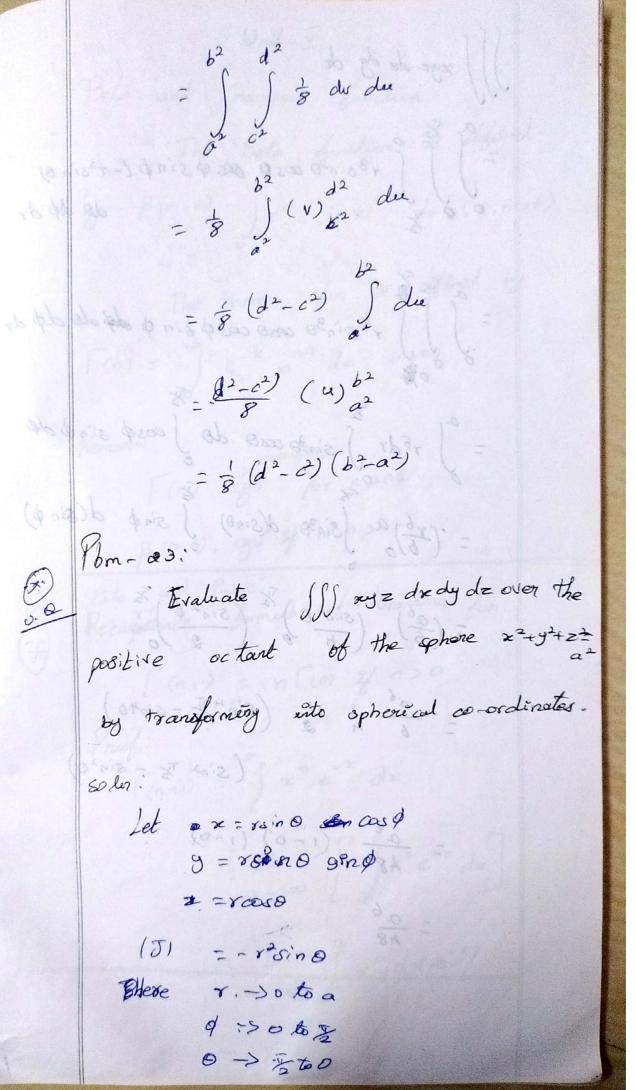
$$\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$
Since  $u, v$  are independent variables

$$\frac{\partial u}{\partial v} = 0 \quad \frac{\partial v}{\partial v} = 0$$
Corrollary:

In the case of those variables

1)  $\frac{\partial(u, v, \omega)}{\partial(x, y, z)} \cdot \frac{\partial(x, y, z)}{\partial(x, y, z)} = \frac{\partial(u, v, \omega)}{\partial(x, y, z)}$ 


$$\frac{\partial(u, v, \omega)}{\partial(x, y, z)} \cdot \frac{\partial(x, y, z)}{\partial(u, v, \omega)} = \frac{\partial(u, v, \omega)}{\partial(u, v, \omega)}$$


$$\frac{\partial(u, v, \omega)}{\partial(u, v, \omega)} \cdot \frac{\partial(x, y, z)}{\partial(u, v, \omega)} = \frac{\partial(u, v, \omega)}{\partial(u, v, \omega)}$$

$$\frac{\partial(u, v, \omega)}{\partial(u, v, \omega)} \cdot \frac{\partial(x, y, z)}{\partial(u, v, \omega)} = \frac{\partial(u, v, \omega)}{\partial(u, v, \omega)}$$

|       | Transformation from cartesion to                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | polar, co-ordinates.                                                                                                                                                                                     |
|       | Let x = rcoso &                                                                                                                                                                                          |
|       | y = r sino                                                                                                                                                                                               |
|       | $\frac{\partial (x, a)}{\partial (x, b)} = \begin{vmatrix} \frac{\partial x}{\partial x} & \frac{\partial a}{\partial x} \\ \frac{\partial x}{\partial x} & \frac{\partial a}{\partial x} \end{vmatrix}$ |
|       | = Cos0 -88190                                                                                                                                                                                            |
|       | $ sins  \gamma \cos \theta$                                                                                                                                                                              |
| 616   | = roos of fr singo                                                                                                                                                                                       |
|       | Since I was are To depending                                                                                                                                                                             |
|       | Transformation from catesian to                                                                                                                                                                          |
| Ala.  | spherical polar co-ordinates.                                                                                                                                                                            |
| (M)   | Let x= x8900 6080                                                                                                                                                                                        |
| (2.7) | y = rsino sin \$  Z = reeso                                                                                                                                                                              |
|       | $\frac{\partial \left(x,y,z\right)}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial x}{\partial \phi} \frac{\partial z}{\partial \phi}$                                                 |
|       | $\frac{\partial (r, \phi, \phi)}{\partial r} = \frac{\partial \theta}{\partial r} = \frac{\partial \theta}{\partial \phi} = \frac{\partial \theta}{\partial \phi}$                                       |
|       | $\frac{\partial z}{\partial r} \frac{\partial z}{\partial \theta} \frac{\partial z}{\partial \theta}$                                                                                                    |

= sino cosq -resinosino rossocosq sinosino reinoceso resosino coso o -tsino = sino coso (- +2 sino cos p)+ + 1 sino cosp (-4sin20 890 - 4 cos36-= sino cosp (-r'sint cosp) + rsinosino (- 45in 0 sin 0 + 8 coso cos \$ (-85in0) cos O cos p) = -r2sin3e ses \$ \$ - 82 sin30sin2\$ - Y2 cos = sino sino - Y2 sino cos 20 cos 2 \$  $= - \gamma^2 \sin 30 - \gamma^2 \cos^2 \theta \sin \theta$ = - 72 sin 8 sin 0 - 72 sin 8 cos 0  $\frac{\partial(\pi,3,\pi)}{\partial(\pi,\phi,0)} = -7^2 \sin\theta$ Pbm - 22. Evaluate II my dx dy, where Ris the negron is the first quadrast. bold by the hyperbolan =2-y2= a2 &





Scanned with CamScanner

|        | Unit-V                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------------|
|        | Beta and Gamma function:                                                                                     |
| 36-12× | The Beta function & defined                                                                                  |
|        | by $\beta(m,n) = \int_{0}^{\infty} x^{m-1}(1-x)^{n-1} dx  (m,n>0)$                                           |
|        | The Gamma fur 28 defend by                                                                                   |
|        | $\Gamma(n) = \int_{0}^{\infty} e^{-x} e^{nx} dx  (nso)$                                                      |
|        | Remark:  converge  (n) gs for n>0#                                                                           |
|        | B(m,n) gs 3/ m,n 20                                                                                          |
| O. A.  | State and Prove: Recurrence formula of Gramma for.  The continue of Gramma for.  The continue of Gramma for. |
| 47)    |                                                                                                              |
|        | Proof: $((n+1) = \int_{0}^{\infty} x^{n} e^{-x} dx$                                                          |
|        | $=\lim_{\alpha\to\infty}\left[\int_{8}^{\alpha}x^{n}e^{-x}dx\right]$                                         |
|        | 1 - (1) 1:                                                                                                   |
|        | $= \lim_{\alpha \to \infty} \int_{0}^{\alpha} x^{n} d(-e^{-x})$                                              |
|        |                                                                                                              |

| $=\lim_{\alpha\to\infty}\left[\left(-x^ne^{-x}\right)_0^\alpha+n\int_0^\alpha e^{-x}x^{n-1}dx\right]$                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $=\lim_{n\to\infty} \left(-x^n e^{-x}\right)^n + n\lim_{n\to\infty} \int_0^\infty e^{-x} dx$                                                    |
| $= (-x^n e^{-x})_0^n + n \int e^{-x} x^{n+1} dx$ $= (-x^n e^{-x})_0^n + n \int e^{-x} x^{n+1} dx$ $= \int dv = d(-x^n)_0^n dv = d(-x^n)_0^n dv$ |
| $= (0+0) + n \int_{S}^{\Phi} e^{-x} x^{n+1} dx^{-1} = e^{-x}$                                                                                   |
| = n F(n)                                                                                                                                        |
| Proporties of Gramma fun                                                                                                                        |
| Preof: $\Gamma(1) = \int_{0}^{\infty} e^{-x} dx$                                                                                                |
|                                                                                                                                                 |
| $= \left(\frac{e^{-x}}{-1}\right)_0^{\infty} = \left(-e^{-x} + e^{-0}\right)$                                                                   |
| $\Gamma(0) = 1$                                                                                                                                 |
| Frank $\Gamma(n+1) = n!$                                                                                                                        |
| Scanned with CamScanner                                                                                                                         |

| Proof:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WKT F(n+1) = n For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| = n(n-1) [(n-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= n(n-1)(n-2) \Gamma(n-2)$ $= n(n-1)(n-2) - 1\Gamma(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $= n(n-1)(n-2)1 \left[ by \\ ppty(1) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| in the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\Gamma(n+1) = n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Frank $\Gamma(n) = 2 \int e^{-y^2} y^2 n - 1 dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Poet: Put x = go dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| when the second of the second  |
| when $y = 0$ , $y = 0$ |
| $= 2 \int e^{-3^2} y^{2n-2+1} dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| of e-y2 and dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| P     | reperties of Beta fren.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | i) $\beta(m,n) = \beta(n,m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | CAN TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Yn    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | $\beta(m,n) = \int_{\infty}^{\infty} m^{-1} (1-\kappa)^{n-1} d\kappa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - Pag | (m, n) (m, n) (m, n) (m, n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6. 80 | 1 et x = -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | when $x=0$ $y=0$ when $x=1$ , $y=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | $(1-3)^{m-1} = \int_{1}^{\infty} (1-3)^{m-1} (1-(1-3))^{m-1} (1-dy)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 2 Jan-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | The second secon |
|       | $= \int (1-y)^{m-1} y^{n-1} dy$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | ) yn-1 (1-4), m-1 dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | ( the test = 8) gr (1-9) ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | $\beta(n,m)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 2 ym-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | ii) B (m,n) = ) = (1+9) m+n dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | Scanned with CamScanne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Proof:

Put 
$$x = \frac{3}{1+3}$$
 $(+3)x = \frac{3}{1+3}$ 
 $x + xxy = \frac{3}{9}$ 
 $x = (-x) \frac{3}{9}$ 

when  $x = 0$ ,  $y = 0$ 

when  $x = 10$ ,  $y = 0$ 

when  $x = 10$ ,  $y = 0$ 
 $(+3) \frac{dy}{(+3)^2}$ 
 $dx = \frac{dy}{(+3)^2}$ 
 $dx = \frac{dy}{(+3)^2}$ 
 $dy = \frac{dy}{(+3)^2}$ 

= ) (+4) m-1+n-1+2 dy  $=\int \frac{y^{m-1}}{(1+3)^{m+n}} dy$ Fis)  $\beta(m,n) = \alpha \beta \sin \alpha n - 1 \cos^{2n-1} x dx$  (on  $\int \sin^{m} x \cos^{n} x dx = \frac{1}{2} \beta \left( \frac{m+1}{2}, \frac{n+1}{2} \right) \left( \frac{1}{2} \right) \left( \frac{1}{2} \right)$ Proof: B(m,n) == == == (1-x) -1 dx (1-x) Put x = sin2t dre = a sint cost dt B(min) = (sin2t) m-1 (1-sin2t) dointwort dt - d Sin2m-2 t (cos2t) n-1 sint cost dt  $\begin{cases} \frac{2m-2+1}{2} & \frac{2}{3} \\ \frac{2m-2+1}{3} & \frac{2m-2+1}{3} \end{cases}$ = d f sin t cos t dt

(x) 89 Pom-1 waned Theorm Relation between pet Beta &  $B(m,n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$ Pres: By ppts (ii) of  $\Gamma$  for,  $\Gamma(n) = 2 \int e^{-x^2} x^{2n-1} dx$  $T(m) = 2 \int e^{-g^2} g^{m-1} dy$  $\Gamma_{(m)} \Gamma_{(n)} = \left( 2 \right) e^{-g} g^{2m-1} dy$  $\left(2\int_{-\infty}^{\infty}e^{-x^{2}}x^{2n-1}dx\right)$  $= \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} \right)^{2n} = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{2n} = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)^{2n} = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2}$ Put x=x0000 and y=xsino and 151=8 Hore probo of (x,y) otoo) 0 -> 0 to 1/2 :  $\Gamma(m)\Gamma(n) = 4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-x^{2}} (r \cos \theta)^{2n-1}$ 

Scanned with CamScanner

 $=4\int_{0}^{2}e^{-x^{2}}e^{2n-1+2m-1+1}$ =4) ] e 2 2m+2n-1 80s 2n-1 8in2my  $=4\int e^{-r^2} e^{2m+3n-1} dr \int cos^{2n-1} sin^{2m}$  $=4\int e^{-r} \gamma^{2m+2m-1} dr \left(-\frac{1}{2}\beta(m,n)\right)$  $= 2\beta(m,n) \cdot e^{-r^{2}} (r^{2})^{m+n-1} d(r^{2})$  $= \beta(m,n) = \int_{0}^{\infty} e^{-r^{2}} (r^{2})^{m+n-1} d(r^{2})$ = B(m,n) [(m+n)  $= \beta(m,n) = \frac{\Gamma(m)}{\Gamma(m+n)}$ 

Problem - 2 P. T 5(1/2) = 57 Proof: Put m=n=12 in the previous nesult  $P(t_2, t_3) = \frac{\Gamma(t_3) \Gamma(t_3)}{\Gamma(t_2 + t_3)}$  $\Rightarrow \beta (\lambda_1, \lambda_2) = \frac{(\Gamma(\lambda_1)^2)}{\Gamma(\lambda_1)}$  $=) \beta(\frac{1}{2},\frac{1}{2}) = (\Gamma(\frac{1}{2}))^2 \left[ -i\Gamma(m=1) \right]$ =) \[ \(\frac{1}{2}\) = \(\beta \frac{1}{2} \frac{1}{2}\)  $= \begin{cases} \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0)}{2} - 1 \\ \frac{1}{2} \sin^2 \frac{2(t_0)}{2} - 1 & \cos^2 \frac{2(t_0$  $= \left\{ 2 \right\} 58n^{\circ} \times 60^{\circ} \times dx$ 1 (3) = [2] \$\frac{1}{2} dx] \frac{1}{2} = [2 [2] \frac{1}{2}] \frac{1}{2} (2(至)) = (元) ( (%) = 5TT

Phon - 3

PT (Pa) (Pt) = (T) FCP) by ppty (iii) of Beta function Sin + \$ coson-1 de 2/2 B(m,n) -20 put 2m= P and dn= #9 0 => \$ sinft x and 9-1 x dx = 13 p(1/2, 9/2)  $=\frac{1}{2}\frac{\Gamma(P_{\Delta})\Gamma(P_{\Delta})}{\Gamma(P_{\Delta})} \longrightarrow \bigcirc -\log pbm_{-1}$ Put q=, in Q; we get Sin P+ & dx = 1/2 (P/2) (C/2)

-> 3

\[
\sin P+ \times \tau = \frac{1}{5} \left(P/2) \left(P/2) \quad \tau = \frac{1}{5} \quad \tau = \frac{1}{5} \quad \tau = \frac{1}{5} \qu Pat P=9 in @ a we get. S sin P-1 x as P-1 x dx = 1/2 [(%) [(%) => I sing x as P-1 x dx = 1 (r(P2))2

T(P2)

$$= \frac{1}{\sqrt{p+1}} \int_{0}^{2\pi} e^{-1} \sin \frac{p+1}{2} \int_{0}^{2\pi} e^{-1} \int$$

| The Contract of the Contract o | $Pbm-4$ $P. T \Gamma(n) \Gamma(n+1/2) = \frac{\sqrt{n} \Gamma(2n)}{2^{2n-1}}$                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proof:  Put p= 2n in pbm-3, we have                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Gamma\left(\frac{\partial n}{\partial x}\right) \Gamma\left(\frac{\partial n+1}{\partial x}\right) = \frac{\sqrt{\pi}}{2^{2n-1}} \Gamma(2n)$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Gamma(n)$ $\Gamma(n+\frac{1}{2})$ = $\frac{\sqrt{n}}{2n-1}$ $\Gamma \otimes n$                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Problem-5                                                                                                                                      |
| and the same of th | P. T (4) T (3/4) = 12 ?  Proof:                                                                                                                |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Put P= 15 la pam-3, se have                                                                                                                    |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\Gamma(4)$ $\Gamma(\frac{5}{2})$ = $\frac{\sqrt{7}}{2^{\frac{1}{2}-1}}$ $\Gamma(\frac{1}{2})$                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 「(省) 「(省) = 一一 (省) (市)                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(4) F(34) = 55 TT                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pom-6 Evaluate & xn (log /x), de                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sola:<br>Put log $x = t \Rightarrow x = e^t$<br>$x = e^{-t} \Rightarrow dx = -e^{-t}dt$                                                        |

when 
$$x = 0$$
,  $t = \infty$ 

when  $x = 1$ ,  $t = 0$ 

$$\int_{0}^{\infty} x^{m}(\log x)^{n} dx = \int_{0}^{\infty} (e^{-t})^{m} (t)^{n} (e^{-t}) dt$$

$$\int_{0}^{\infty} e^{-(m+1)t} t^{n} dt$$

when  $t = 0$  =>  $f = 0$ 

when  $t = \infty$  =>  $f = 0$ 

when  $t = \infty$  =>  $f = 0$ 

when  $t = \infty$  =>  $f = 0$ 

$$\int_{0}^{\infty} e^{-(m+1)t} t^{n} dt = \int_{0}^{\infty} e^{-3t} \int_{0}^{\infty} dy$$

$$\int_{0}^{\infty} e^{-3t} \int_{0}^{\infty} dy$$

Pbm-7 Evaluate Je-x2dx Solution: when x=0, t=0 when == 00, t=0 Q(Edx) = dt  $dx = \frac{dt}{x \sqrt{t}}$  $\int e^{-x^2} dx = \int e^{-t} \frac{dt}{\partial t}$ n 5 /2 = 'z Jet t' dt = '= Jet t' dt  $= \frac{1}{2} \Gamma(\frac{1}{2}) = \frac{1}{2} \sqrt{n} = \sqrt{\frac{n}{2}}$ Problem 8
Exposs Sxm (1-xn) P dx Interms of Gramma function and evaluate the Entegral \ x5(1-x3) on Solution: Put x" = y -> 0 Diff O win to x , we get

$$dx = \frac{dy}{nx^{n-1}}.$$

$$dx = \frac{dy}{n(x^{n-1})}.$$

$$dx = \frac{dy}{n(y^{n-1})}.$$

$$dx = \frac{dy}{n(y^{n-$$

I x gt dy dx = I x ggt dy dx = ) x 8 ( 29-11 ) o de  $= \frac{1}{2+1} \int_{-\infty}^{\infty} x^{2} (y^{2+1}) dx = \frac{1}{2}$ = 1 ) x (1-x) 2+1 dx. B(P+1, 9+2) (m) T(P+9+3) = 7+1 \$\frac{\( \( \rac{1}{2} + 1 \) \( \frac{2}{2} + 1 \) \( \frac{2}{2} + 1 \) F (P+9+3) F (P+1) FC9+1) ((P+2+3) B(m, n) = 2

Solution:
$$\beta(m,n) = \int_{-\infty}^{\infty} x^{m-1} (1-x)^{n-1} dx$$

$$m = 8, \quad n = 9$$

$$\int_{-\infty}^{\infty} x^{7} (1-x)^{8} dx = \beta(8,9)$$

$$= \frac{f(8) f(9)}{f(8+9)} = \frac{f(9) f(9)}{f(17)}$$

$$\int_{-\infty}^{\infty} x^{7} (1-x)^{8} dx = \frac{7!}{6!} \frac{8!}{16!}$$

$$\int_{-\infty}^{\infty} \sin^{7}\theta \cos^{5}\theta d\theta$$
Solution:
$$\beta(m,n) = \partial_{-\infty}^{\infty} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$

$$\int_{-\infty}^{\infty} \beta(m,n) = \int_{-\infty}^{\infty} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$$
Scanned with CamScanner

$$\int_{a}^{2} \int \sin^{2}\theta \cos^{2}\theta d\theta = \frac{1}{2} \beta(4,3)$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{6!}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 2 \times 3 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 3 \times 4 \times 4 \times 5 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 3 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 3 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$= \frac{1}{2} \frac{3! \cdot 0^{2}}{(1 \times 4 \times 6)}$$

$$=$$

= 1.8.8.7.9 To - 63 17 16 × 32 grand Pom - 1, Evaluate the entagral If x 3 de dy over the positive quadrant of the corde. 2+92 = at in them of Gramma function. Deduce ) the area of the wrebe (i) The co-ordinates of the certon centroid of a quadrant of the cercle.

Solution: The positive quadrant of the circle in given by the aquation - If x g 2 dx dy off  $= \iint \left(a(x^{\frac{1}{2}})^{\frac{1}{2}}\right)^{2} \left(a(x)^{\frac{1}{2}}\right)^{2} \left(a - \frac{1}{2}x^{-\frac{1}{2}}dx\right)$ (a 's y " dr) = S a X. 2 y 2 dx dy = 0 1 SX P=1 y 2=1 dx dy 1 a B (8+1/94') = a +9+2 | | -x + 2 | d x dv, Over the negion  $\times 50$ ,  $\times 20$   $\times + \times = 1$ 

$$\frac{1}{2} \frac{1}{2} \frac{1$$

: Area of the circle = 4- at 5(5)1(5) = 7 a2 i) Let (x,3) be the co-ordinates of the centraid at the quadrant of the concle : = Is dady , to the integral ( ) Slay dr being taken over the negion n 20 , y 20 , 2+32 La2 11 -11) by 5 = Standy over the negion above To find & Pet P=1, 9=0 Numerator of  $\overline{z} = \frac{a^3}{4} \overline{z}$ = \frac{a^3}{4} \frac{\int\_{\beta}}{\frac{2}{3}} \frac{\int\_{\beta}}{(\frac{2}{3})} \fr 2 等(多人分下台) + sb 15 10 2 3 FF

$$\frac{a^3}{3} = \frac{\mu a^3}{3\pi a^2} = \frac{ha}{3\pi}$$

$$\frac{a^3}{4|\pi a^2|} = \frac{\mu a^3}{3\pi a^2} = \frac{ha}{3\pi}$$

$$\frac{a^3}{5} = \frac{\pi a}{4|\pi a^2|} = \frac{ha}{3\pi}$$

$$\frac{a^3}{5} = \frac{\pi a}{3\pi}$$

$$\frac{a^3}{5} = \frac{ha}{3\pi}$$

$$\frac{a^3}{5} = \frac{ha}{3\pi}$$

$$\frac{a^3}{5} = \frac{ha}{5\pi}$$

$$\frac{a^3}{5} = \frac{ha}{5\pi}$$

$$\frac{a^3}{5\pi} = \frac{ha}{5\pi}$$

$$\frac{a^3}{3\pi} = \frac{ha}{3\pi}$$

$$\frac{a^3}{3\pi} =$$

= ) sogt (2 x+1) 1-x-y dy dr = +1) } f x 9 g 9 (1-x-9) dy dx Now the negton is neclaced to - 1 = 50 , 850 , 8+2 5 1 Pat x+3=u and y = uv. x + uv = u & y = w  $\frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} v & -u \\ v & \omega \end{vmatrix} = u$ dxayzudadv when re =0 (a(1-v) =0 (4+ x++=) u =0 (0x) v=1 when y =0, uv=0 Hence the nedwed nagion becomes uso, w=1, v=0, v=1 is the us plane.

The gn integral is = - 1 ) Sul (1-v) Pul ve 1 (1-v) Pul ve 1 (1-v) - uv) \*\* u dudu, = 1 / (1-v) Pv2 = - 1 ) uP+q+1 (1-0) r+1 da J v9 (1-v) dv =  $\frac{1}{p}(p+q+2, r+2)$  p(q+1, p+1)= T(P+9+2) \(\(\text{(r+a)}\) \(\(\text{(q+1)}\) \(\text{(p+)}\) \(\text{(p+1)}\) \(\text{( 1 (x+1) F(x+1) F(2+1) F(P+1)

T(P+2+x+4) 

1 pm - 13 P.T III dx dy dz = 12, the integration extended to all positive values of the variables for which the expression is neal. Soln: Put x2 = x, 52 = Y, 22 = Z.  $\Rightarrow x = \sqrt{x}, y = \sqrt{y}, z = \sqrt{z}$  $\frac{\partial(x,3,z)}{\partial(x,y,z)} = \begin{vmatrix} \frac{1}{2}x^{-\frac{1}{2}} & 0 & 0 \\ 0 & \frac{1}{2}y^{\frac{1}{2}} & 0 \end{vmatrix}$ V 0 0 2 2 15 = d x d ( L y to Z to ) - g (x yz) z = 1 8.(xxx  $\iiint_{1-x^2} \frac{dx \, dy \, dz}{\sqrt{1-x^2-y^2+z^2}} = \frac{1}{8} \iiint_{1-x^2} \frac{(1-x-y-z)^{\frac{1}{2}}}{\sqrt{x}}$   $dx \, dy \, dz$ dxdydz

Over the region X+ Y+ Z =1 Put Z = (1-x-x) sin20 dz = 2 (1-x-y) sino couo do when  $Z = 0 \Rightarrow 0 \Rightarrow 0$ when  $z = 1 - x - y = 50 = \frac{\pi}{5}$ 8 S (-x-y-z) d x dy d z

(xyz

1-x /2  $= \frac{1}{8} \int_{0}^{1-x} \int_{0}^{1-x} \frac{(1-x-y)(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}y^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}y^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}y^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}y^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)(1-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-y)(1-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-y} \frac{(1-x-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-x-y} \frac{(1-x-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-x-y} \frac{(1-x-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-x-y} \frac{(1-x-x-y)}{x^{\frac{1}{2}}} \int_{0}^{1-x-x-y} \frac{(1-x-x-y)}{x^$ 2 (1-x-Y) sinocosodo dydx = # \[ \left[ \frac{1-x-y}{x^2 y^2} \left[ \frac{1-x-y}{x^2 y^2} \right] \] coso de du dx = # S S X X Y T SI- X-Y cooledged = till x x x dody dx = 1/4 (0) x x x x x d y d x

2/ x 2/ 5 x 2/ 1-x) = \frac{1}{8} \left( \frac{1}{2-1+1} \right) \times \frac{1}{2} \dx = 1/8 x 2 / x 3(1-x) 3 dx = = = B(-1/2+1, 1/2+1) = F B(12, 3/2) = \( \frac{\( \frac{1}{2} \) \( \frac^2 \) \( \frac{1}{2} \) \( \frac{1}{2} \) \( \frac{1}{2} \) \( \f = 五 (一) ) 3 store do 13 Stano do = 3 (500 do 2) 5000 3

$$\frac{1}{3} \sin^{\frac{1}{3}} \theta \cos^{\frac{1}{3}} \theta d\theta$$

$$= \frac{1}{3} \beta \left(\frac{3}{4}, \frac{1}{4}\right)$$

$$= \frac{1}{3} \beta \left(\frac{3}{4}, \frac{1}{4}\right)$$

$$= \frac{1}{3} \frac{\Gamma(3_A) \Gamma(3_A)}{\Gamma(3_A + 1_A)}$$

$$= \frac{1}{3} \frac{\Gamma(3_A) \Gamma(3_A)}{\Gamma(3_A + 1_A)}$$

$$= \frac{1}{3} \frac{\Gamma(3_A) \Gamma(3_A)}{\Gamma(3_A)}$$

$$= \frac{1}{3} \frac{\Gamma(3_A) \Gamma(3_A)}{\Gamma(3_A)}$$

$$= \frac{1}{3} \frac{\Gamma(3_A) \Gamma(3_A)}{\Gamma(3_A)}$$

$$= \frac{1}{3} \frac{\Gamma(3_A) \Gamma(3_A)}{\Gamma(3_A) \Gamma(3_A)}$$

$$= \beta \left(\frac{3}{4}, \frac{3}{4}\right)$$

$$= \beta \left(\frac{3}{4}, \frac{3}{4}\right)$$

$$= \beta \left(\frac{3}{4}, \frac{3}{4}\right)$$

$$= \frac{1}{3} \frac{\Gamma(3_A) \Gamma(3_A)}{\Gamma(3_A) \Gamma(3_A)}$$

$$= \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3}$$

$$= \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3}$$

$$= \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3}$$

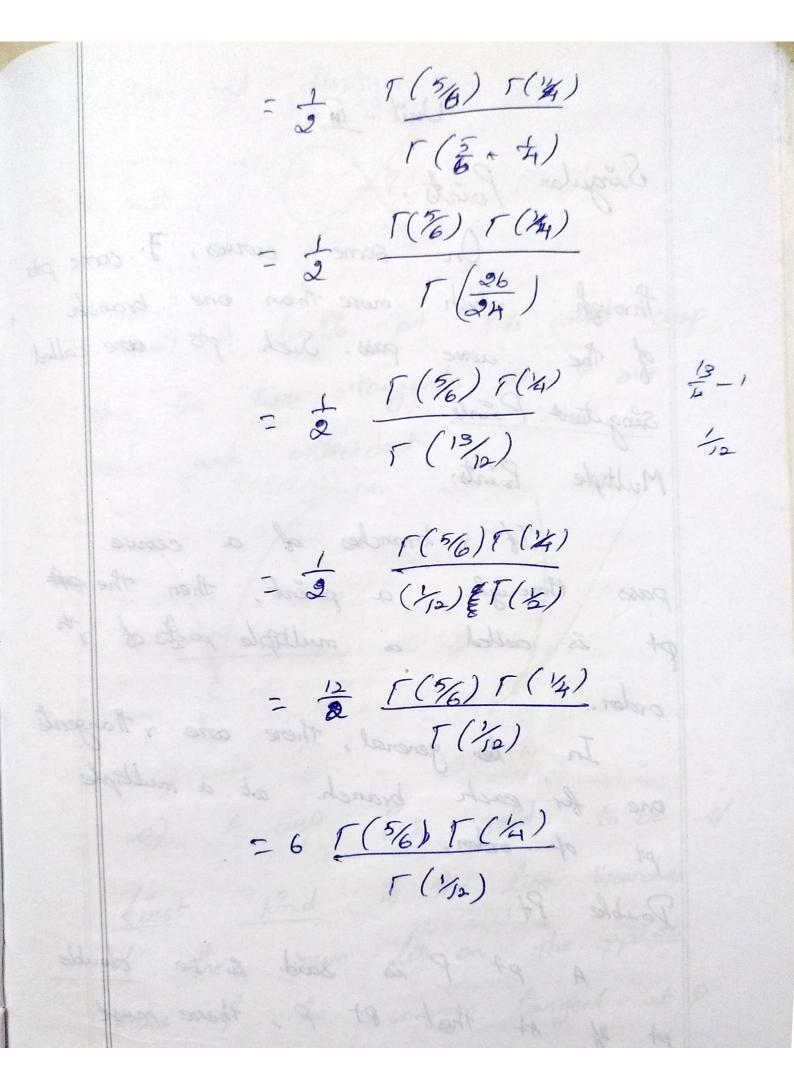
$$= \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3}$$

$$= \frac{1}{3} \frac{$$

= 35 [(35) (55) (55) (de) = (35) (35) (15) (35) (35) (35) 371 3) PT 3 Vsino do 3 Tsino do = FT Julian:

The sine do sino do Sin & odo sin to do = " sin'20 coso do J sin's o coso do = 一方月(至十) 立月(本中) = 古月(考,包)月(海,重)

$$\frac{1}{h} \frac{\Gamma(3_{h}) \Gamma(3)}{\Gamma(3_{h}+1_{2})} \frac{\Gamma(4_{h}) \Gamma(4_{h})}{\Gamma(4_{h}+1_{2})}$$


$$= \frac{1}{h} \frac{\Gamma(3_{h}) \Gamma(3_{h})}{\Gamma(\frac{\omega}{8})} \frac{\Gamma(4_{h}) \Gamma(\frac{\omega}{8})}{\Gamma(\frac{\omega}{8})}$$

$$= \frac{1}{h} \frac{\Gamma(3_{h}) \Gamma(3_{h})}{\Gamma(\frac{\omega}{8})} \frac{1}{\Gamma(\frac{\omega}{8})}$$

$$= \frac{1}{h} \frac{\Gamma(3_{h}) \Gamma(3_{h})}{\Gamma(3_{h})} \frac{1}{\Gamma(\frac{\omega}{8})}$$

$$= \frac{1}{h} \frac{\Gamma(3_{h}) \Gamma(3_{h})}{\Gamma(3_{h})}$$

$$= \frac{1}{h} \frac{\Gamma(3_{$$



Unit - M Singular Points: there exists On some curves, 7. some pts through which more than one branch of the come pass. Such pts come called Singular Points. Multiple Points: If a branches of a cenue pass through a point, then the past pt is called a multiple posts of the order. In les general, there we y Hangents one for each branch at a multiple pt of order. Double Pt: (a) A pt P is said to be double Pt of At that . Pt P, there must be passes, two branches of a curve 11/8 une con défine triple pt. Classification of Pouble Pt: ?) A double pt & is called a node of the tangents at P are

Head and destinct. ii) A double pt Pas colled cusp of the two tangents at P one real and co. orcident. S Conjugate pr whose so-ordinates solies (1) PP Popula (8.3) on The wave flows) a = 30 (a) = 8 for the distance a) A cusp P2 said to be of first kind it the two branches of the curve lie on the apposite sides of the common trangent at P. eg). Fig (a) b) A way p is said to be of second kind of the two branches of the curve lee on the same side of the common tangent at P. (eg) . Fig (b)

iii) A double pt Pis said to be conjugate pt, of the tongents at Pare imaginary. Remark: i) If P & the conjugate pt, then those are no neal pts on the curve in the neighborhood of that pt. So Conjugate pt is an isolated pt whose co-ordinates satisfis the equation of the come. ii) A Point (x,y) on the curve f(x,y)2 is a multiple pt if fx = by = 0 iii) A double pt & a node of (frg) =-frz fgy >0 is) A double pt is a cusp of (fxy) = 8xx fy =0 v) A double pt is a conjugate pt 26 (fry)2 - tre tops 20 vi) If fox = 600 = 1xy =0, then the pt (x19) will be multiple pt of

higher order. Find the position and nature of the double pts of the our curve. atyd = x " (axd - 9002) -Sola: Gin come. atg2 = xt (2002 - 3a2) ->0 Let f(x,y) = 2x6 - 3a2x4 - a4x2 = 0 fx = 1285 - 12a2x3 fxx = 60x4 - 36a2x2 fxs = 0 fy = -20tg foy = -22+ The double posts pts are got from fx =0 9 85 =0 fx=0 =) 12x5-120 x =0 => 12x3(x2-a2) =0  $\chi^3 = 0 \quad (or) \quad \chi^2 = \alpha^2$ x co (oi) x cata such fy =0 => -2any =0

Hence the double pts are (0,0), (a,0) (-a.0) In these pts (0,0) only lee on the : (0,0) is the only the double pt arrie . At (00) , \$xx =0, 8 yy = -00", f 20 = 0 (fxy) - fxx fsg = 02- 0(-007) The double it (0,0) is a map 0 => y = x + (2x2-3a2)  $y = \pm \frac{x^2}{x^2} \left( a x^2 - 3 \alpha^2 \right)^{\frac{1}{2}}$ Hence he small value of x, positive on regative - (222-302) is regative y is imagin ary No portion of the conve lies in the ahod of the origin Here the origin is the conjugate pt pot a cusp. neighbor

Solution:

Given come

$$x^3 + x^2 + y^2 - x - hy + 3 = 0$$

Let  $(x, y) = x^3 + x^2 + y^2 - x - hy + 3 = 0$ 

Let  $(x, y) = x^3 + x^2 + y^2 - x - hy + 3 = 0$ 
 $f_x = 3x^2 + dx - 1$ 
 $f_{xx} = 6x + 2$ 
 $f_{xy} = 0$ 
 $f_{xz} = 6y + 2$ 

The double pts are get from

 $f_{xz} = 6y + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 + 2x - 1 = 0$ 
 $f_{xz} = 3x^2 +$ 

curve.

(-1/2) As the only double point.

At (1,2)  $f_{xx} = -4$ ,  $f_{yy} = 2$   $f_{xy} = 0$ (1/2)  $f_{xx} = -4$ ,  $f_{yy} = 2$   $f_{xy} = 0$ (1/2)  $f_{xx} = -4$ ,  $f_{yy} = 2$   $f_{xy} = 0$ (1/2)  $f_{xx} = -4$ ,  $f_{yy} = 2$   $f_{xy} = 0$ (1/2)  $f_{xy} = -4$ ,  $f_{yy} = 0$ The double point (-1,2) is a node.

2)  $x^{h} - \mu a x^{3} + \partial a y^{3} + \mu a^{9}x^{2} - 3a^{2}y^{2} - a^{h} = 0$ Solution:

Given wave  $x^{h} - \mu a x^{3} + \partial a y^{3} + \mu a^{9}x^{2} - 3a^{2}y^{2} - a^{h} = 0$ Let  $f(x, y) = x^{h} - \mu a x^{3} + \partial a y^{3} + \mu a^{9}y^{2} - a^{h} = 0$   $f_{x} = \mu x^{3} - \mu a x^{2} + 8a^{9}x$   $f_{nx} = |a x^{2} - a \mu a x + 8a^{9}|$ Let  $f(x, y) = x^{h} - \mu a x^{2} + 8a^{9}x$   $f_{nx} = |a x^{2} - a \mu a x + 8a^{9}|$   $f_{xy} = 0$ Let  $f(x, y) = x^{h} - \mu a x^{2} + a^{h}y^{2} + a^{h}y^{2} - a^{h}z^{2}$   $f_{xy} = 12ay - 6a^{2}y$ The double points are got form  $f_{x} = 0$   $f_{y} = 6ay - 6a^{2}y$ 

fx =0 => 4x3-12ax2+8a2x =0 do2 | 3a Ax [x2-30x +830] =0 -0 -0 4x [& a) (x-20)] =0 x=0, x=a, x=da fy =0 => 6 ay 2 - . 6 aly =0 6ay [y-a] =0 y=0, y= a Hence the double points are (0,0) (a,0), (da,0), (o,a), (a,a), (da,a) -In these points (a10) only be son the : (a10) is the only double pt. cowe. At (a,0) fix = -40 fyy = -600 fry =0 (fry)2 - frx fyy = (0)2 - (+ax) (-6ax) = - QHa4 LO (fry) - fro fyy 20 - 20 The double point (a10) is a consugate point. In the positi (0,-2) (4,0) (4,10) be the the double panel - come

3) 
$$x^{h} - 80y^{3} - 30^{h}y^{h} - 30^{h}y^{h} + a^{h} = 0$$

Solution:

 $Chiven Conve' - x^{h} - day^{3} - 30^{h}y^{h} - 20^{h}y^{h} + a^{h} = 0$ 
 $let_{f}(x,y) = x^{h} - day^{3} - 30^{h}y^{h} - 20^{h}y^{h} + a^{h} = 0$ 
 $lx = h \times^{3} - h a^{h}x^{h} + a^{h}x^{h} + a^{h} = 0$ 
 $ly = -6ay^{h} - 6a^{h}y^{h}$ 
 $ly = -6ay^{h} - 6a^{h}y^{h}$ 
 $ly = -6ay^{h} - 6a^{h}y^{h}$ 

The double point one get from.

 $lx = 0 \quad g \quad ly = 0$ 
 $lx = 0 \quad g \quad ly = 0$ 
 $lx = 0 \quad (g \quad ly = 0)$ 
 $lx = 0 \quad (g \quad ly = 0)$ 
 $lx = 0 \quad (g \quad ly = 0)$ 
 $lx = 0 \quad (g \quad ly = 0)$ 
 $lx = 0 \quad (g \quad ly = 0)$ 
 $lx = 0 \quad (g \quad ly = 0)$ 
 $lx = 0 \quad (g \quad ly = 0)$ 

Hence the double pand points one

 $lx = 0 \quad (g \quad ly = 0) \quad (g \quad ly \quad (g$ 

- ano (0,-a), (a,0) (a,0) and the double & paints. A+ (0,-a) fxx = -4a2 fyy= 12a2-6a2 fxy =0 ( fxy) - fxx fyy = (0) 2 (-4a2) [ma2-6a2] = 4804-2404 = 240 2 >0 (fxg)2 - fxx fyy >0 The double point (0,-a) is a node. At (a10) fxx = 80 fy = -60 fxy =0 (fry) 2 - fxx fyy = (0)2-(82)(-62) =48a4 >0 12-0-12-0-12 ( c-1) (fry) - fxx fry >0 The double point (a.o) is a reale. At (-010) fox = 80 fy= -60 fry=0 (123)2 - fox fyy = (0)2 - (802) (-602) = 4804 >0 (fey)2 - fxx fyy 20 The double point (-a10) & a node.

A) 
$$x^2(x-y) + y^2 = 0$$

Solution:

The given curve

 $x^3 = x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f(x,y) = x^3 - x^2y + y^2 = 0$ 

Let  $f($ 

Hence the double points and & (0,0) In this point (00) on is lie as the cove. (60) is a double point At 600 fxx = 0 , 899 = 2 fxy = 0 (fry) - fxx fyg = (0) - (0)(0) (1xy)2 - 1xx 1yy =0 The double paint (0:0) is a cusp. Pom - 2 Find the position and nature of the double pts of the were x3+3x2y-4y3 -2+9+8=0 Solution: The Given come x3+3x4y-4y3-2+9+300 let (x,y) = x3+3xy-4xy3-x+y+3=0 1x = 3x2 + 6xy -1 fxx = 6x + 6y . fry = 6x fy = 3x2-12y2+1 = 1 = 1 = 1 = 1 = 0 fy = -24y = -24+8/=0 14 05 984 - 401 - 984 + 684+384

The double points are got from fx =0 & fx =08 fx =0 =) 3x2 +6xy + =0 => 6xy = 1-3x2 3× (2+24) +=0 y= 1-3× ty =0 =) 302 - 10y2 / 1 =0 3x2 - 13 (1-9x2)2+1 =0/ 3x2 /- 18th (1+9xt \$-6x2) +1=0 3/x2 - = (1+9x4-6x2)+100  $\frac{9x^{3}-x-9x^{4}+6x^{2}+3x}{3x}=0$ 19x2-x-9x+3x=0 9x4 -18x +x-3 20 322(32-5) +2-3 -0.  $9x^{4} - 9x^{3} - 6x^{2} + x - 3x = 0$ 9 ×3(x-1)/-6×2-2×2=0 9x3(x+) ty=0=) 3x2 1282 + 1 =0 3x2 - 12 (1+9x4 - 6x2) +1=0  $3x^2 - (1 + 9x^4 - 6x^2) + 1 = 0$ 9x7-1-9x7 +6x2+3x2

9x2-1=0 out you 9x2= 1 TAM 605) some a seal both 2 = # 25 the troping fx=0=> 3(4) =+6(5)8 + 50 3+24-1 50 23 = 1-3 = 3 とっち=)3(な)+6(ち)ソー1=0 of - 2y -1 =0 5-2y-0100 => - 2y= 1/3+1 -ay = 2 -2y = 3 Hence the double point are (治,为,(治,治),(治,治) .. Hence there are no double poents.

Kinds of Cusps: WKT at a cusp two branches of a cover have a common tangent and hence they have a common normal also. Single cusp: A cusp is said to be single cusp if the two branches of the curve lie entirely on one side of the common normal at the cusp. Hence The double pe (15, 18) (4, 18, 18) (3, 18) (4, 18) Double cusp: A cusp is said to be a double cusp if the two branches of the come extend to both sides of the common normal at cosp.

cusp of first kind: (first species) If the branches of the curve opposite sides of the common lee on the the tangent at the cusp, the cusp & called the cusp of first kind. (usp of second kid (second species) If the branches of the swee on the same stide of the common Hoargent at the cusp, the cusp is called the coesp of second hand.

Working rule to find the nature of the ausp at origin. case (i) the cuspidal tangents are y = 0 In this case solve the given for equation for y neglecture terms containing powers of y higher than i) Single cusp of the nexts are neal for the one sign of x. ii) Double ousp of the roots are real for both signs of x. (ii) First species if the roots are opposite en sign. (1) Second species if the roots are of the same sign. Case (ii) The aspedd targents are 2=0

In this case, solve the given aquation for x neglecting terms containing the powers of x higher than two. 1) Single cusp of the mosts are neal for one sign of y 1) Double cusp of the noots are need for both signs ofy. iii) First species if the noots one Opposite in signis) Second species if the roots one of some sign. Case(iii) The uspidal tourgents are (ax+by) =0 In this case put p=ax+by and eliminate y or x (whichever is convenient) from the given equation of the curve. Supple we eliminate y, then we get an equation in p and x.. Salve the equation for p (neglecting 103 and higher powers of p).

Nature of cusp will be devided case (i) (taking p for y) (on) Case (ii) (taking p for x) Case (iv) Nature of the cusp at a pt other Than the origin. Transfer . The origin to that pt at proceed as és case i en case a or case 3 may be. Problem-3 Show that the wasp 3 (dans) = x3 has a single coop of first species at origin. Solution: 30 som call The given were worke form x3 - 20 y2 + xy2 = 0 -> 0 Equating the to zono zono the lowest degree terms we get - 20gl =0 => 900

Scanned with CamScanner

.. The noots are neal and coin adant Hence the origin is a cusp (or) confugate pt. 12 3 - Day 2 + ory From O, we get  $x^3 + y^2(x-9d)$  $y = \pm x \left(\frac{x}{x-2a}\right)$ when x is small and positive, y is real. Hence the need branches of the curve pass thorough origin. .. The origin is cusp. Also for any small and positive value of x, the two values of y are opposite signs. : The cusp is of first species, Also from Q, Jis real if x is snall and positive. : The cusp is a signile cusp. · Origin is a single cuspe of for frist species.

Pbm-H S.T the curve  $y^3 = (x-a)^2 (x-a)$ has a spengle cusp of the first species at (a,0) Soln: The aquation of the curve is y3 = (x-a) 2 (2x-a) --> 1 Shifting the origin (aco) by Putting x=x+a, y=y (2(x+a)-a)  $y^3 = x^2(2x+a) \rightarrow \otimes$ Equating the to zero the lowest degree terms, we get, a x2=0 x2 co, whose roots are great and co. encodent. Hence the new origin (aco) is a cusp (or) confugate pt. From @ 8loving for x, neglecting x 3 and higher powers of x we get y3 = ax2 x 2 = 1/3 a

x = ty Sta -> 3 When Y's sasmall and positive x is seed real. Hence (a10) is a cusp. From @ for one sign of y, x is need. . The cusp is single cusp. Also for any small positive value of y, two values of x are opposite The wsp is of first species : (a,0) & a single was of first spe ves. i) Find the nature of the emp The coup do  $\mathcal{J}^{2}=\chi^{3}$ . Solution.
The given were is of the form x3 - y2 =0 ->0 Equating the le 2000 the lowest degree terms we get, - 1º =0 19 =0

Hence the roots are real and coincident. Here: + The origin & cusp or conjugate pt. From O Je = 23 J = + xSx -> @ when & is a small and positive, & is neal. Here the origin is a cusp. Also havy small and possitive value of x, the two values of y are apposite te signs. .. The was is first species. Also from Q & is need it K is small and positive. : The cusp is a single cresp . The origin is a sign single cusp of first species.

2. Find the nature of the way. g = x + (x+2) Solution: The give come is of the form y" = x4 (x+2) ->0 \$ x5 + 2x4 - y2 =0 -> 0 Equating to zero the lowest dagnee levins, se het -y<sup>2</sup> =0
-y<sup>2</sup> =0
-y<sup>2</sup> =0
-y<sup>2</sup> =0 . The noots are neal and co incident. Hence the onigin is a cusp or conjugate pt. From O y2 = x4 (x+2) y = = x e x + 2. -> 3 When x is small positive and langest la negativer , y is real. Hence the origin is a cusp. From 3 for two signs of x, y is need. ود دیدد

i. The way to a Double was. Also any small positive and largest regative values of the two values of it are apposite signs . The cusp is first species. The origin is a single ceup of first species. 3) S.T the curve y3 = x3 + ax2 has a single cusp at first species. Curwe Tracing. Suppose a curve &. nepresented. entering of Catesian co-ordinates by the equation of f(x,y) =0. The following pro provide the useful informations negrading the the shape and nature of the work. I Symmetry of the were (a) Symmetry about x-axis A were fixed) to is symmetric about & axis it f(x,-y) = f(x,y)

(g) 32 = 4ax, x2 +y2 = a2 ) ded yh + ya + x 3 =0 But x + 30 = ay is not agramatic about & axis. (b) Symmetory about y-axis. A cove firy) =0 is symmetric about y axis if: 1(-x,y) = f(x,y) (9) x2 = A ay , x2+y2 = a2, y = x4 + x2+a But xx +y2 = ax is not symmetric about y axis. Note: xx+y2 = a2 is symmetric about both x and y axes. In this case the equation involves even and only even powers of xard g. (c) Symmetry about the line yex. If fixig) = f(xix) then the come is symmetric about the line y=x (g). nd +g = a2 , x 3+y3 = 3 my sany xy = co are symmetric about the

like y=x. (d) Symmetry about the origin. (or) Symmetric d'és apposite qua docent. If f(-x:-5) = f(x -9) then he thouse is symmetric about the opposite quardrants (61) origin. (eg) x2 y2 = a2, xy = c2 are symmetric about the origin by x3+53 = 3 any, of 2 = 23, are not symmetric and about the origin. Note: From the above examples, the equation of the course had has all symmetric popules. I Points of intersection with the co-ordinate axes: To obtain the pts where the curve f(x,y) =0 entensects the x axis, put yes in the gn egn & solve for 2 1110 to find the pts where the

curve f(x,y) =0 intersects the gax's. Put x =0 in the gn equation & solve for y. at (eg) .) The curve x2+ya=a custs the x axes at (a10) &(-a10), wets of axes at (0, a) & (1, -a). ii) The curve yo = 4 ax pass through to origin. Region en which the come bes: If the equation of the come f(x,y) =0 can be expressed in the form y = g(x), we determine the values of \* for which y & inaginary. or J is not defined. ob Similar information can be retained of the earn of the curve con be expressed in the form x=g(y) No portion of the wave to les In the corresponding origin -(eg) The nouse yo (a-x) = x3 can be written as g = x \( \frac{x}{a-x} \) clearly & & em aginary when x>0 or x enca

Hence the wive does not be to the left of the j-axis and to the the right of the lane x=0. Is Targets to the course (a) Tangents at the origin: If the origin is found to be a goent on the wave when the tangents gt the origin are obtained by egn to zero the lowest degree terms occuring in the eqn. (eg) god stran passes through the origin and the lovest degree term occurring to set is wax which when equating to zero becomes 40x =0 (i.e) x=0. Hence y-axis is the tangent to the possibola at the yes are the tangents For the curve aty2 = a2x2 -x4, 9= ±x are the tangents at the origin. (b) Targents at any other pt (h. h.) other than the origin

Find du at (h. h) and at gives the slope set of the tangets to the curve at this point. This will be useful to do a de. the nature of the make langents whother possabled to the re-cereis ory care's a sindired tangent.

& desemptates:

The consept of a asymptotic described in the previous chapter will be helpful to know about the asymptotes in tracing any curve.

a) tograptotes parallel to the x-axis.

These are obtained by equating to zero the conflicient of the highest power of x.

(eg) (y+a) x2+x-1 co has an asymptotes y=-a portalled to the x-axis.

(b) Asymptotes parallel to the years.

These we obtained by equating to the highest power of y.

(eg)  $y^2 (4-x^2) = x^3-1$  has asymptotically  $4-x^2=0$  (i.e) x=2 and x=-2 are two asymptotes parallel to the y-axis.

(0) Individed asymptotics.

Taking y=mx+c or an asymptotes we can find moved c by substituting.

y=mx+c in the equation and equation of equations to zero the various pawers. It is starting from the highest power.

(g) For the come x3+x3=30 ms.

Nexty+a=0 is an inclined insymptotes.

Pts at which the function is maximum or minumum; The pts of inflexation intervals in which the function is increasing or descreasing, negro on of can cavity and convenity, and mattip multiple pts.

Such as cresp, node, conjugat pts tom provide cosqle informations in determing the shape of the curve.

|          | Having know all these Enformations      |
|----------|-----------------------------------------|
| K fo     | by impeating or investigation we should |
| 86       | trace the cerve.                        |
| 11.02.3) | S. T the wowe y3 = x3+ax2 has           |
| Ji.      | S. The curve y3 = x3+ax2 nows at the    |
|          | origin.                                 |
|          | The given exercise                      |
|          | Figurating to zero the lowest degree    |
|          | texms we get                            |
|          | 0 x =0                                  |
|          | The next are neal and coexcident.       |
|          | Il the crigin to a cusp (er)            |
|          | + ot.                                   |
|          | From (1) , weger                        |
| cal      | $ax^2 = y^3$ $x^2 = y^3$ $tud$          |
|          |                                         |
| .4       | when y is small and postive ix s red.   |
| V        | the rether sed                          |
|          | of the name unith a ansome put          |

. The origin of a cusp. Also any small and positive value of y The two values of a to at apposite signs . The wsp is first f-species From @ x is great if yes small and positise . The cusp is sign single cusp. . The origin is a single cusp of first species. Thate the worke 2/3 + 3/3 = 2/3 (Four asped egoloid or a steroid) Solution. The gn es n2/3 + 32/3, = 2/3 ->0,23 Clearly the worve is symmetrical about both the axes. Hence it is enough to discuss the rature of the cove in the first quadrant only. To find the points intersection of the nowe with re axis, we put

g =0 in O, we get x3 = a/8  $\therefore x^2 = \alpha^2$ hence x=ta Hence the curve meets the x axis at (a10) and (-a,0) Simlorly the wave meets the james at (o,a) and (o,-a) Rewriting @ as ( 3/a) = 1- (2/a) 3 we see that if 1x1 xa, then (3/2) 20 and hence y is irreginary. 1-(7) Hence the curve does not be beyond  $\kappa = \pm \alpha$ Similarly, the curve does not live beyond  $y = \pm a$ Also dy = - 3 % : do = o at (a10) hence x axis a a tangent to the two branches of the wave at (a10) lying this the first q and fourth quadrants. Hence the curie has a cusp of first kind at (010) Similarly the curve has casps

first land at (0,0) (a,0) and (0,-9) Hence the come is know as four cusped hypogicy doid. Also the wowe is concave in a [0,a] . Hence the form of the wowe is as shown in the figure. Note: The garametric equation of this curve con be taken as x=a cos30, y=as7n30 Problem - 6 Thate the cover cover  $\frac{3}{4}$  (assold) Solution: The gn cowe y2 (da-x) = x3 - 20

Scanned with CamScanner

Since @ contains even powers of I the nowe is symmetrical about the x-axis obviously it passes. through the origin. The targents at the oxigin one given by y =0 and they are neal and co-incident. Hence the origin is a cusp. The curve meats the x-axs and y-axis only at the origin Equatingly the wefraent of the highest degree them is y to zero, -8= H 30+ H we get x - 2a = 0The asymptotes paralled to the y axis is x-easo and this is the only asymptote of the surve. Writing the given equation as y '= x frank (considering the positive root) We see that I is imaginary when x co (or) x > 80. # Hence the worke does not be the eyn your

to the left of the y-ares and to the right of the line x= wa. As x socreses from o to sa y increases from o to as Hence the form of the curve is as Shown in the fegure and the curve is called cassoid. singles the weetfurent of the Trace the curve y2(a2+x2)=x2(a2-x2)  $y^{2}(2a^{2}) = x^{2}(a^{2} - a^{2})$   $y^{2} = x^{2}(a^{2} - a^{2})$  $y^2(a^2+x^2)=x^2(a^2-x^2)$ The power of both x and y are even and hence the curve is Symmetrical about the bothaxes. The wive obviously posses through the oragen. The tongents at the origin are given the equ yo = xo

Thus the tangents y= ± x are need. and distance, Hence the origin & is a node. The curve meets the x-axis at (0,0) and (-0,0). The curve has no asymptotes. The given egn can also be corretten as 3=x  $\left(\frac{\alpha^2-x^2}{\alpha^2+x^2}\right)$  $\frac{du}{dx} = \frac{a^{2} - da^{2} x^{2} - x^{4}}{(a^{2} + x^{2})^{3/2} (a^{2} - x^{2})^{1/2}}$ Clearly dy -> as x -> +a Hence the tangents to the curve at (a0) and (a10) are parallely to the francis. Now, Tx =0 => at - 2a x 2 - x+=0 = (-1) => x4+da2x2-a4=0 (x)2- sof x2- at = 0 x2 - .- dax + (8a4) x = a (-1 ± (2) The real values of x for which dy =0 are tar(a-1) He Thus the targents are paralled

to the x-axis at x = ±a VCrs-1) We note that I is imaginary if 1x1>a, Hence the whole en ceouse lies between the lines x = ±a Obviously the wave passes through the origin . As & increase y also encrease and goes on Encrease until x = a (co-1), where do =0 (i.e) the targent is paralled to the x axis. As x éncrease from x = ata-1) to a, y decreases and finally becomes zero when x 2a. The form of the curve is as shown in the figure. May see to det de Scanned with CamScanner plom-8 Trace the course x3+y3=3any x3 + y3 = 30 xy -> 0 If x and y are intercharged the equation of the curve of is unaltered. Hence the curve is symmetrical about the line x=y. To find the entensection of the were with this line we put x=y in O we get. dx 3 = 30 x2 00 2000  $x^{2}(\alpha n - 3\alpha) = 0$  Hence x = 0,  $x = \frac{3\alpha}{2}$ Thus the points of intersection of the curve with the line x=g are (0,0) and (39, 39) Now, equating the lowest degree terms to zero we get my = 0 we get the targents at re-o and to at the Oragio. (s.e) The x-axis and y-axis are the tangents at the origin. The come has no verted cal asympto tes.

However we can check for the oblique asymptotes of putting y=mx+c is O, we find, mand a by equating to zero the co-efficient of x3 and x4 nespectively. Ne get 23+ (mx+c)3 - 30x(mx+c)=0 (1+m3) x3+ 3x2 (3m2c-3am)+x (3mc2-3ac)+c3=0 Equating the co-efficient x3 and x9 to o, we get ++m2=0 8 m2c - 8 acm = 0 Now, 1+m3 =0 5) m=+ 3m2 c - 3am = c=-a Hence y = -x - a is an asymptotes to the curve. The form of the curve is as Shown in the figure. The cove is known as follown of Descartes.

Shown to the figure. Groblem-9 soldway basidos Trace the curve you = ax3 Solution: The to we've is symmetric about the x-axts. It powers through the origin. It has a tangent you (x-axis) at (0,0). The curve has no asymptotes. Since y is imaginary when x20. no part of the were less to the left of the y-axis. The serve does not cut the axis except at the oxiger. Since the x axis is the

tangent and the aver & symmetering about the x-axis the two branches of the curve. Oragin is a cusp. The form of the curve is Shown is the figure. The curve is called seni cubical parabola. frace the device pos